Baek, In Suck;Lee, Hoonsoo;Kim, Dae-Yong;Lee, Wang-Hee;Cho, Byoung-Kwan
Journal of Biosystems Engineering
/
v.37
no.5
/
pp.319-326
/
2012
Purpose: Cheese texture is an important sensory attribute mainly considered for consumers' acceptance. The feasibility of nondestructive measurements of cheese texture was explored using non-contact ultrasonic sensors. Methods: A novel non-contact air instability compensation ultrasonic technique was used for five varieties of hard cheeses to measure ultrasonic parameters, such as velocity and attenuation coefficient. Five texture properties, such as fracturability, hardness, springiness, cohesiveness, and chewiness were assessed by a texture profile analysis (TPA) and correlated with the ultrasonic parameters. Results: Texture properties of five varieties of hard cheese were estimated using ultrasonic parameters with regression analysis models. The most effective model predicted the fracturability, hardness, springiness, and chewiness, with the determination coefficients of 0.946 (RMSE = 21.82 N), 0.944 (RMSE = 63.46 N), 0.797 (RMSE = 0.06 ratio), and 0.833 (RMSE = 17.49 N), respectively. Conclusions: This study demonstrated that the non-contact air instability compensation ultrasonic sensing technique can be an effective tool for rapid and non-destructive determination of cheese texture.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.280-282
/
2021
A particular matter prediction model was designed using a deep learning algorithm to solve the problem of particular matter forecast with subjective judgment applied. RNN and LSTM were used among deep learning algorithms, and it was designed by applying optimal parameters by proceeding with hyperparametric navigation. The predicted performance of the two models was evaluated through RMSE and predicted accuracy. The performance assessment confirmed that there was no significant difference between the RMSE and accuracy, but there was a difference in the detailed forecast accuracy.
In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.
Kim, Chung;Lee, Dong-Cheon;Yom, Jae-Hong;Lee, Young-Wook
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2004.04a
/
pp.337-343
/
2004
Spatial information could be obtained from spaceborne high resolution optical and synthetic aperture radar(SAR) images. However, some satellite images do not provide physical sensor information instead, rational polynomial coefficients(RPC) are available. The objectives of this study are: (1) 3-dimensional ground coordinates were computed by applying rational function model(RFM) with the RPC for the stereo pair of Ikonos images and their accuracy was evaluated. (2) Interferometric SAR(InSAR) was applied to JERS-1 images to generate DEM and its accuracy was analysis. (3) Quality of the DEM generated automatically also analyzed for different types of terrain in the study site. The overall accuracy was evaluated by comparing with GPS surveying data. The height offset in the RPC was corrected by estimating bias. In consequence, the accuracy was improved. Accuracy of the DEMs generated from InSAR with different selection of GCP was analyzed. In case of the Ikonos images, the results show that the overall RMSE was 0.23327", 0.l1625" and 13.70m in latitude, longitude and height, respectively. The height accuracy was improved after correcting the height offset in the RPC. i.e., RMSE of the height was 1.02m. As for the SAR image, RMSE of the height was 10.50m with optimal selection of GCP. For the different terrain types, the RMSE of the height for urban, forest and flat area was 23.65m, 8.54m, 0.99m, respectively for Ikonos image while the corresponding RMSE was 13.82m, 18.34m, 10.88m, respectively lot SAR image.
Kwon, Oyun;Lee, JeeEun;Kwon, Jun Hwan;Lim, Seong Jun;Yoo, Sun Kook
Journal of Korea Multimedia Society
/
v.23
no.3
/
pp.402-411
/
2020
Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.
Journal of Korean Society for Geospatial Information Science
/
v.15
no.4
/
pp.31-39
/
2007
As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.
This paper focuses on GPS positioning accuracy variations according to locations of obstacles which surround GPS station. We derived precise coordinates of a GPS station which has a good visibility. Its observation data was rewritten by assuming signal blocking due to obstacle in the elevation angle of $10^{\circ}$ to $70^{\circ}$. We processed daily and hourly data for 10 days. In the results using daily data, RMSE was at 10mm level. And RMSE increased to 100mm levels in case of hourly data. As the elevation angle of obstacle increased, the horizontal and vertical RMSE increased, while the height estimates decreased. These results showed the higher the elevation angle of the obstacle increased the loss of large amounts of data by blocking satellite signals direction. In terms of the direction, when the blocking thing was located in the east or west, the coordinate has larger error in the east-west direction. And if signal was blocked at the south direction, the difference between the east-west error and the south-north position error was reduced.
The application of micro-simulation model has been extended farther with improvement of computer performance and development of complicated model. To make a micro-simulation model accurately replicate field traffic conditions, model calibration is very crucial. Studies on calibration of micro-simulation model have not been enough while lots of studies on calibration of macro-simulation model have been continued in our country. This paper presents an auto-calibration of parameter values in micro-simulation model(VISSIM) using genetic algorithm. RMSE(Root Mean Square Error) of collected volume on the urban expressway versus simulated volume is set as MOP(measure of performance) and objective function of optimization is set as to minimize the RMSE. Applying to urban expressway(Nae-bu circular) as a case study, it shows that RMSE of optimized parameter values decrease 60.4%($19.3{\longrightarrow}7.6$) compared to default parameter values and the proposed auto-calibration system is very effective.
Journal of The Korean Society of Agricultural Engineers
/
v.62
no.1
/
pp.39-50
/
2020
The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.24
no.5
/
pp.333-342
/
2012
We studied the characteristics of spatial distribution of global wave height and carried out the modelsensitivity test by changing the input field, model resolution and physical factor (effective wind factor) since the spatial and temporal resolution in wind wave forecasting is one of most important factors. Comparisons among the different cases, and also between model, buoy and satellite data have been made. As a results of the wind-wave model run using the high resolution wind field, the bias of significant wave height showed the positive tendency and the Root-Mean Square Error(RMSE) was a bit decreased based on the comparison with buoy data. When the model resolution was changed to higher, the bias and RMSE was increased, and as the effective wind factor was smaller than default value(= 1.4) the bias and RMSE showed also decreasing pattern.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.