• Title/Summary/Keyword: RMSE(Root Mean Squared Error)

Search Result 141, Processing Time 0.024 seconds

Validation of MoCA-MMSE Conversion Scales in Korean Patients with Cognitive Impairments

  • Jung, Young Ik;Jeong, Eun Hye;Lee, Heejin;Seo, Junghee;Yu, Hyun-Jeong;Hong, Jin Y.;Sunwoo, Mun Kyung
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.4
    • /
    • pp.148-155
    • /
    • 2018
  • Background and Purpose: Two conversion scales between the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) have been validated for Korean patients with Parkinson's disease. The aim of the present study was to validate these conversion scales for all patients with cognitive impairments regardless of dementia subtype. Methods: Medical records of 323 subjects who completed both MMSE and MoCA on the same day were retrospectively reviewed. Mean, median, and root mean squared error (RMSE) of the difference between true and equivalent MMSE scores were calculated. Intraclass correlation coefficients (ICCs) between true and equivalent MMSE scores were also calculated. The validity of MoCA-MMSE conversion scales was evaluated according to educational level (low educated: ${\leq}6$ years; high educated: ${\geq}7$ years) and subtypes of cognitive impairment. Results: The difference between true and equivalent MMSE scores had a median value of 0, a mean value of 0.19 according to the van Steenoven scale, a mean value of 0.57 according to the Lawton scale, RMSE value of 2.2 according to the van Steenoven scale, and RMSE value of 0.42 according to the Lawton scale. Additionally, ICCs between true and equivalent MMSE scores were 0.92 and 0.90 on van Steenovan and Lawton conversion scales, respectively. These results were maintained in subgroup analyses. Conclusions: Findings of the present study suggest that both van Steenovan and Lawton MoCA-MMSE conversion scales are applicable to transforming MoCA scores into MMSE scores in patients with cognitive impairments regardless of dementia subtype or educational level.

Age Estimation with Panoramic Radiomorphometric Parameters Using Generalized Linear Models

  • Lee, Yeon-Hee;An, Jung-Sub
    • Journal of Oral Medicine and Pain
    • /
    • v.46 no.2
    • /
    • pp.21-32
    • /
    • 2021
  • Purpose: The purpose of the present study was to investigate the correlation between age and 34 radiomorphometric parameters on panoramic radiographs, and to provide generalized linear models (GLMs) as a non-invasive, inexpensive, and accurate method to the forensic judgement of living individual's age. Methods: The study included 417 digital panoramic radiographs of Korean individuals (178 males and 239 females, mean age: 32.57±17.81 years). Considering the skeletal differences between the sexes, GLMs were obtained separately according to sex, as well as across the total sample. For statistical analysis and to predict the accuracy of the new GLMs, root mean squared error (RMSE) and adjusted R-squared (R2) were calculated. Results: The adjusted R2-values of the developed GLMs in the total sample, and male and female groups were 0.623, 0.637, and 0.660, respectively (p<0.001), while the allowable RMSE values were 8.80, 8.42, and 8.53 years, respectively. In the GLM of the total sample, the most influential predictor of greater age was decreased pulp area in the #36 first molar (beta=-26.52; p<0.01), followed by the presence of periodontitis (beta=10.24; p<0.01). In males, the most influential factor was the presence of periodontitis (beta=9.20; p<0.05), followed by the number of full veneer crowns (beta=2.19; p<0.001). In females, the most influential predictor was the presence of periodontitis (beta=18.10; p<0.001), followed by the tooth area of the #16 first molar (beta=-11.57; p<0.001). Conclusions: We established acceptable GLM for each sex and found out the predictors necessary to age estimation which can be easily found in panoramic radiographs. Our study provides reference that parameters such as the area of tooth and pulp, the number of teeth treated, and the presence of periodontitis should be considered in estimating age.

Impact of Activation Functions on Flood Forecasting Model Based on Artificial Neural Networks (홍수량 예측 인공신경망 모형의 활성화 함수에 따른 영향 분석)

  • Kim, Jihye;Jun, Sang-Min;Hwang, Soonho;Kim, Hak-Kwan;Heo, Jaemin;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.11-25
    • /
    • 2021
  • The objective of this study was to analyze the impact of activation functions on flood forecasting model based on Artificial neural networks (ANNs). The traditional activation functions, the sigmoid and tanh functions, were compared with the functions which have been recently recommended for deep neural networks; the ReLU, leaky ReLU, and ELU functions. The flood forecasting model based on ANNs was designed to predict real-time runoff for 1 to 6-h lead time using the rainfall and runoff data of the past nine hours. The statistical measures such as R2, Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE), the error of peak time (ETp), and the error of peak discharge (EQp) were used to evaluate the model accuracy. The tanh and ELU functions were most accurate with R2=0.97 and RMSE=30.1 (㎥/s) for 1-h lead time and R2=0.56 and RMSE=124.6~124.8 (㎥/s) for 6-h lead time. We also evaluated the learning speed by using the number of epochs that minimizes errors. The sigmoid function had the slowest learning speed due to the 'vanishing gradient problem' and the limited direction of weight update. The learning speed of the ELU function was 1.2 times faster than the tanh function. As a result, the ELU function most effectively improved the accuracy and speed of the ANNs model, so it was determined to be the best activation function for ANNs-based flood forecasting.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

Estimating the unconfined compression strength of low plastic clayey soils using gene-expression programming

  • Muhammad Naqeeb Nawaz;Song-Hun Chong;Muhammad Muneeb Nawaz;Safeer Haider;Waqas Hassan;Jin-Seop Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The unconfined compression strength (UCS) of soils is commonly used either before or during the construction of geo-structures. In the pre-design stage, UCS as a mechanical property is obtained through a laboratory test that requires cumbersome procedures and high costs from in-situ sampling and sample preparation. As an alternative way, the empirical model established from limited testing cases is used to economically estimate the UCS. However, many parameters affecting the 1D soil compression response hinder employing the traditional statistical analysis. In this study, gene expression programming (GEP) is adopted to develop a prediction model of UCS with common affecting soil properties. A total of 79 undisturbed soil samples are collected, of which 54 samples are utilized for the generation of a predictive model and 25 samples are used to validate the proposed model. Experimental studies are conducted to measure the unconfined compression strength and basic soil index properties. A performance assessment of the prediction model is carried out using statistical checks including the correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), the relatively squared error (RSE), and external criteria checks. The prediction model has achieved excellent accuracy with values of R, RMSE, MAE, and RSE of 0.98, 10.01, 7.94, and 0.03, respectively for the training data and 0.92, 19.82, 14.56, and 0.15, respectively for the testing data. From the sensitivity analysis and parametric study, the liquid limit and fine content are found to be the most sensitive parameters whereas the sand content is the least critical parameter.

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme (모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링)

  • Park, Sang-Sik;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

A Comparative Study Between Linear Regression and Support Vector Regression Model Based on Environmental Factors of a Smart Bee Farm

  • Rahman, A. B. M. Salman;Lee, MyeongBae;Venkatesan, Saravanakumar;Lim, JongHyun;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.38-47
    • /
    • 2022
  • Honey is one of the most significant ingredients in conventional food production in different regions of the world. Honey is commonly used as an ingredient in ethnic food. Beekeeping is performed in various locations as part of the local food culture and an occupation related to pollinator production. It is important to conduct beekeeping so that it generates food culture and helps regulate the regional environment in an integrated manner in preserving and improving local food culture. This study analyzes different types of environmental factors of a smart bee farm. The major goal of this study is to determine the best prediction model between the linear regression model (LM) and the support vector regression model (SVR) based on the environmental factors of a smart bee farm. The performance of prediction models is measured by R2 value, root mean squared error (RMSE), and mean absolute error (MAE). From all analysis reports, the best prediction model is the support vector regression model (SVR) with a low coefficient of variation, and the R2 values for Farm inside temperature, bee box inside temperature, and Farm inside humidity are 0.97, 0.96, and 0.44.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.