• Title/Summary/Keyword: RMS 지연확산

Search Result 32, Processing Time 0.017 seconds

On the Performance Analysis of Coherent Bandwidth in Underwater Channel Environments Using Beamforming Technologies Based on the Use of Measurement Data (측정 데이터를 이용한 빔형성기의 적용에 의한 수중 채널 환경에서의 상관 대역폭 분석)

  • Kim, Min-Sang;Cho, Dae-Young;Kim, Kye-Won;Lee, Tae-Seok;Park, Jong-Won;Lim, Yong-Gon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.162-168
    • /
    • 2014
  • The OFDM system have been widely studied for the purpose of increasing data rate with more reliable communications in underwater channel environments. And it is possible only when the sub-carrier's bandwidth is smaller than the coherence bandwidth of channel in the underwater OFDM communication system. However, the size of the FFT for the OFDM system will be increased because the coherence bandwidth is as small as several tens of Hz in real underwater channel environments. Also, It is necessary to add a CP having a length longer than the rms delay spread of a channel. So the complexity of the system is increased and the data efficiency is reduced. Therefore, in this paper, we have studied the increase of the coherence bandwidth by adapting the beamforming technologies. To do this, we have collected data from real underwater channel environments and analyzed the coherence bandwidth when adapting the beamforming technologies. Analyzing the experimental data show that the coherence bandwidth by the beamforming technologies in underwater channel environments was greatly increased compared to that of a single sensor.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.