• Title/Summary/Keyword: RMS 오차

Search Result 214, Processing Time 0.029 seconds

The analysis for the static and kinetic positioning accuracy of NDGPS (NDGPS의 정적 및 동적 측위 정확도 분석)

  • Song, Geul-Jae;Park, Kwon-Il;Kong, Hyun-Dong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.611-619
    • /
    • 2008
  • The Ministry of Land, Transport and Maritime Affairs is working on the construction of Nationwide DGPS(NDGPS) with connection to Maritime DGPS Reference Stations and if Chun-cheon Reference Station is to be completed in 2008, DGPS positioning information is available in the whole area of Republic of Korea. Therefore to promote the usage of DGPS surveying information, we measured and panalyzed the accuracy of DGPS. In real-time DGPS positioning accuracy were 0.42m of planar Root Mean Square(RMS) error in static survey and 0.48m of planar RMS error in dynamic survey. We went abreast with RTK comparison measurement. According to these results. DGPS positioning information cannot be applied directly to the GIS construction field, but GIS application fields, requiring the real-time positioning information. can take advantage of it in variable cases.

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

Comparison of electrode arrays for earth resistivity image reconstruction of vertical multi layers (수직 다층구조의 대지저항률 영상복원을 위한 전극배열법의 비교)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.149-155
    • /
    • 2018
  • In this paper, we used ET(Electrical Tomography) for earth resistivity image reconstruction of vertical multi layer underground model. The earth resistivity is analyzed generally as the parallel multi-layer model, however possibly there happens vertical layer model. Here to find the best electrode array in case of vertical layer underground model, Wenner, Schlumberger, and Dipole-dipole electrode arrays, which are well known electrode arrays used in ET, have been tested. And Gauss-Newton algorithm is used in ET inversion. RMS error analysis shows that Wenner electrode array is best in imaging.

Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.199-210
    • /
    • 2009
  • Even though there are several Global Navigation Satellite Systems under development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration. For accuracy validation, predicted orbits were compared with precise ephemeris. The RMS(Root Mean Square) and maximum 3-D errors were 14.3 km and 17.4 km for one-day predictions. In case of 7-day predictions, the RMS and maximum 3-D errors were 15.7 and 40.1 km, respectively. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked by nearby buildings.

Phase Angle Synchronization for Accurate Calculation of Half-cycle RMS Value (정밀한 반주기 실효값 계산을 위한 위상각 동기화 알고리즘)

  • Ham, Do-Hyun;Lee, Kook-Sun;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.111-112
    • /
    • 2014
  • 본 논문에서는 그리드 코드에서 요구하는 반주기 실효치 계산 방식을 국내 계통에 적용하기 위한 실효값(RMS) 계산 알고리즘을 제안한다. 정확한 실효값을 계산하기 위해서는 국내 계통 60Hz에 적합한 샘플링 주파수가 적용되어야 한다. 따라서 기존의 실효값 계산 알고리즘과 제안하는 실효값 알고리즘을 시뮬레이션 및 실험데이터를 제시하고, 속응성 및 오차 특성을 비교 제시한다.

  • PDF

A Study on Optimal Measurement Parameter Selection of Turboprop Engine using Nonlinear GPA Technique (비선형 GPA 기법을 이용한 터보프롭 엔진의 최적 계측 변수 선정에 관한 연구)

  • 기자영;공창덕;임강택
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.49-53
    • /
    • 2001
  • 터보프롭 엔진의 성능진단을 위한 선형 GPA(Gas Path Analysis) 및 비선형 GPA 프로그램을 개발하고 최적 계측 변수 선정을 위한 해석을 수행하였다. 압축기 오염과 압축기 터빈 및 동력터빈의 부식에 의한 손상을 가정하고 계측변수를 6개, 8개, 10개로 달리하여 각각 선형 GPA 기법과 비선형 GPA 기법을 이용하여 해석을 수행한 후 RMS 오차를 비교하였다. 해석 결과 비선형 GPA 기법을 이용한 경우의 RMS 오차가 선형 GPA 기법을 이용한 경우보다 적어 비선형 GPA 기법의 유용성을 확인할 수 있었다. 또한 적절한 계측변수의 선정을 통해 보다 적은 계측 장비로 더 신뢰성 있는 결과를 얻을 수 있음을 확인하였다.

  • PDF

Orbit Prediction using Almanac for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 알마낙 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.119-127
    • /
    • 2009
  • Even though there are next generation Global Navigation Systems in development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted using Keplerian elements in almanac and the orbit equation. For accuracy validation, predicted orbits were compared with precise ephemeris. As a result, the 3-D maximum and RMS (Root Mean Square) errors were 155.4 km and 56.3 km for 7-day predictions. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked nearby buildings.

Investigation of Long-Term Shoreline Changes Using Aerial Images (항공사진을 이용한 장기해안선변화 조사)

  • 정승진;김규한;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this paper, the affine transformation method that is more simpler compare with digital orthophoto method is used analyzed the long-term shoreline change, and accuracy estimation was carried out. As a result of this study, it was able to check that the shoreline change on Namhangjin coast had eroded significantly compare with the past. Moreover, as a result of accuracy estimation, it shows that the RMS error around shoreline was about 1-2 m. In consideration that maximum allowable error shown in aerial photogrammetry specification is within 2 m, therefore, analysis results of shoreline change using affine transformation method on aerial images is reliable.

Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary (금강하구 연안역에서 HF radar로 측정한 유속의 정확도)

  • Lee, S.H.;Moon, H.B.;Baek, H.Y.;Kim, C.S.;Son, Y.T.;Kwon, H.K.;Choi, B.J.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.42-55
    • /
    • 2008
  • To evaluate the accuracy of currents measured by HF radar in the coastal sea off Keum River estuary, we compared the facing radial vectors of two HF radars, and HF radar-derived currents with in-situ measurement currents. Principal component analysis was used to extract regression line and RMS deviation in the comparison. When two facing radar's radial vectors at the mid-point of baseline are compared, RMS deviation is 4.4 cm/s in winter and 5.4 cm/s in summer. When GDOP(Geometric Dilution of Precision) effect is corrected from the RMS deviations that is analyzed from the comparison between HF radar-derived and current-metermeasured currents, the error of velocity combined by HF radar-derived current is less than 5.1 cm/s in the stations having moderate GDOP values. These two results obtained from different method suggest that the lower limit of HF radar-derived current's accuracy is 5.4 cm/s in our study area. As mentioned in previous researches, RMS deviations become large in the stations located near the islands and increase as a function of mean distance from the radar site due to decrease of signal-to-noise level and the intersect angle of radial vectors. We found that an uncertain error bound of HF radar-derived current can be produced from the separation process of RMS deviations using GDOP value if GDOP value for each component is very close and RMS deviations obtained from current component comparison are also close. When the current measured in the stations having moderate GDOP values is separated into tidal and subtidal current, characteristics of tidal current ellipses analyzed from HF radar-derived current show a good agreement with those from current-meter-measured current, and time variation of subtidal current showed a response reflecting physical process driven by wind and density field.

1/10,000 Scale Digital Mapping using High Resolution Satellite Images (고해상도 위성영상을 이용한 축척 1/10,000 수치지도 제작)

  • Lee, Byung-Hwan;Kim, Jeong-Hee;Park, Kyung-Hwan;Chung, Il-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.11-23
    • /
    • 2000
  • The subjects of this study are to examine and to apply the methods of making 1 : 10,000 scale digital maps using Russian's 2 m resolution satellite images of Alternative and 8 m resolution stereo satellite images of MK-4 for the Kyoha area of Paju-city where aerial-photo surveying is not possible. A digital elevation model (DEM) was calculated from MK-4 images. With this DEM, the Alternative images were orthorectified. Ground control points (GCP) were acquired from GPS surveyings and were used to perform geometric corrections on Alternative images. From field investigation, thematic attributes are digitized on the monitor. RMS errors of the planar and vertical positions are estimated to ${\pm}0.4$ m and ${\pm}15$ m, respectively. The planar accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as base maps for, such as, regional and urban plannings.

  • PDF