• Title/Summary/Keyword: RIL population

Search Result 33, Processing Time 0.018 seconds

Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul;Cho, Sung-Hwan;Zhang, Haitao;Paik, Hyo-Chung;Lee, Chung-Hee;Li, Jinjie;Yoo, Jeong-Hoon;Lee, Byun-Woo;Koh, Hee-Jong;Seo, Hak Soo;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2007
  • During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

Different expression levels of OsPLS1 control leaf senescence period between indica and japonica-type rice

  • Shin, Dongjin;Kim, Tae-Hun;Lee, Ji-Yun;Cho, Jun-Hyeon;Song, You-Chun;Park, Dong-Soo;Oh, Myeong-Gyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.98-98
    • /
    • 2017
  • Leaf senescence is the process of aging in plants. Chlorophyll degradation during leaf senescence has the important role translocating nutrients from leaves to storage organs. The functional stay-green with slow leaf yellowing and photosynthesis activity maintenance has been considered one of strategy for increasing crop productivity. Here, we have identified two QTLs on chromosome 9 and 10 for leaf senescence with chlorophyll content of RIL population derived from a cross between Hanareum 2, early leaf senescence Indica-type variety, and Unkwang, delayed leaf senescence Japonica variety. Among these QTLs, we chose qPLS1 QTL on chromosome 9 for further study. qPLS1 was found to explain 14.4% of the total phenotypic variation with 11.2 of LOD score. Through fine-mapping approach, qPLS1 QTL locus was narrowed down to about 25kb in the marker interval between In/del-4-7-9 and In/del-5-9-4. There are 3 genes existed within 25kb of qPLS1 locus: LOC_Os09g36200, LOC_Os09g36210, and LOC_Os09g36220. Among these genes, transcript level of LOC_Os09g36200 was increased during the leaf senescence stage and the expression level of LOC_Os09g36200 in Indica was higher than in Japonica. Finally, we chose LOC_Os09g36200 as candidate gene and renamed it as OsPLS1-In and OsPLS1-Jp from Indica- and Japonica-type rice, respectively. OsPLS1-In and OsPLS1-Jp overexpressing transgenic plants showed both early leaf senescence phenotype. These results indicate that OsPLS1 functions in chlorophyll degradation and the difference of expression level of OsPLS1 cause the difference of leaf senescence between Indica and Japonica in rice.

  • PDF

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.