• Title/Summary/Keyword: RGDF

Search Result 5, Processing Time 0.022 seconds

ADHESIVENESS EVALUATION OF ACTIVATED PLATELET USING Arg-Gly-Asp-Phe(RGDF)-IMMOBILIZED SURFACE

  • Kim, J.H.;Kim, H.J.;Kim, J.;Ryu, G.H.;Min, B.G.;Choe, T.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.333-336
    • /
    • 1997
  • The adhesion of activated and normal platelets to fibrinogen requires the receptor binding site of GPIIb/IIIa. These recognition sites exists in the A ${\alpha}$ chain(RGDS at 572-575 and RGDF at 95-98) and the carboxy-terminal of ${\gamma}$ chain (HHLGGAKQAGDV at 400-411) of fibrinogen. In this study, we developed RGDF-immobilized surface to detect the unctional state of platelet. RGDF-immobilized surface was prepared on the glass using photolithographic technology. Platelet adhesion to RGDF-immobilized surface was observed by staining platelets with mepacrine using a fluorescence microscope using mepacrine. Using the RGDF peptide of fragment E, we observed that the platelets pretreated with PGE1 interacted incompletely with RGDF-immobilized surface, whereas ADP activated platelets interacted with the surface extensively. These results show that the distinct selectivity of RGDF-immobilized micro-patterned surface can be used to detect the unctional state of platelets.

  • PDF

Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum

  • Hye-Young Yu;Dong-Bin Rhim;Sang-Kyu Kim;O-Hyun Ban;Sang-Ki Oh;Jiho Seo;Soon-Ki Hong
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • Background: Red ginseng marc, the residue of red ginseng left after water extraction, is rich in dietary fiber. Dietary fiber derived from fruits or vegetables can promote the proliferation of probiotics, and it is a key technology in the food industry to increase the productivity of probiotics by adding growth-enhancing substances such as dietary fiber. In this study, the effect of red ginseng dietary fiber (RGDF) on the growth of probiotic bacterial strains was investigated at the phenotypic and genetic levels. Methods: We performed transcriptome profiling of Lactiplantibacillus plantarum IDCC3501 in two phases of culture (logarithmic (L)-phase and stationary (S)-phase) in two culture conditions (with or without RGDF) using RNA-seq. Differentially expressed genes (DEGs) were identified and classified according to Gene Ontology terms. Results: The growth of L.plantarum IDCC3501 was enhanced in medium supplemented with RGDF up to 2%. As a result of DEG analysis, 29 genes were upregulated and 30 were downregulated in the RGDF-treated group in the L-phase. In the S-phase, 57 genes were upregulated and 126 were downregulated in the RGDF-treated group. Among the upregulated genes, 5 were upregulated only in the L-phase, 10 were upregulated only in the S-phase, and 3 were upregulated in both the L- and S-phases. Conclusions: Transcriptome analysis could be a valuable tool for elucidating the molecular mechanisms by which RGDF promotes the proliferation of L.plantarum IDCC3501. This growth-promoting effect of RGDF is important, since RGDF could be used as a prebiotic source without additional chemical or enzymatic processing.

Evaluation of the platelet adhesiveness using a peptide-immobilized surface

  • Kim, J.H.;Kim, H.J.;Kim, J.W.;Min, B.G.;Choe, T.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.16-18
    • /
    • 1997
  • The adhesion of stimulated and unstimulated platelet to fibrinogen requires the receptor binding site of GPIIb/IIIa. These recognition sites are existed in the Au chain(RGDS at positions 572-575 and RGDF at 95-98) and the carboxyterminal $\gamma$ chain (HHLGGAKQAGDV at 400-411) of fibrinogen. The unstimulated platelet does not adhered on the fragment E-coated surface containing RGDF sequence. In this study, we developed RGDF-immobilized surface to detect the functional state of platelet. RGDF-immobilized surface was prepared on the glass using photolithographic technology. Platelet adhesion to petide(RGDF)-immobilized surface was observed by the fluorescence microscope using mepacrine.

  • PDF

Evaluation of Activated Platelet Using Peptide-Immobilized Surface (펩타이드가 고정된 표면을 이용한 혈소판 활성화 평가)

  • Kim, J.H.;Kim, H.J.;Kim, J.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.223-224
    • /
    • 1998
  • RGDF immobilized micro-patterned surface was developed to detect the functional state of platelets. Using photolithographic technology, an RGDF micro-patterned surface was prepared on silicon wafer. Platelet adhesion to this surface was observed by fluorescence microscopy after staining platelets with mepacrine. Nonactivated platelets pretreated with $PGE_1$ interacted incompletely with the RGDF micro-patterned surface, whereas activated platelets treated with ADP interacted with the surface extensively. These results show that the distinct selectivity of an RGDF-immobilized micro-patterned surface can be used to detect the functional state of platelets.

  • PDF

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong;Park, Ji-Ae;Kim, Jung Young;Lee, Ji Woong;Lee, Minkyung;Shin, Un Chol;Kang, Joo Hyun;An, Gwang Il;Lee, Kyo Chul;Ryu, Young Hoon;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.