• Title/Summary/Keyword: RGB-D camera

Search Result 96, Processing Time 0.033 seconds

Depth and RGB-based Camera Pose Estimation for Capturing Volumetric Object (체적형 객체의 촬영을 위한 깊이 및 RGB 카메라 기반의 카메라 자세 추정 알고리즘)

  • Kim, Kyung-Jin;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.123-124
    • /
    • 2019
  • 본 논문에서는 다중 깊이 및 RGB 카메라의 캘리브레이션 최적화 알고리즘을 제안한다. 컴퓨터 비전 분야에서 카메라의 자세 및 위치를 추정하는 것은 꼭 필요한 과정 중 하나이다. 기존의 방법들은 핀홀 카메라 모델을 이용하여 카메라 파라미터를 계산하기 때문에 오차가 존재한다. 따라서 이 문제점을 개선하기 위해 깊이 카메라에서 얻은 물체의 실제 거리와 함수 최적화 방식을 이용하여 카메라 외부 파라미터의 최적화를 진행한다. 이 알고리즘을 이용하여 카메라 간의 정합을 진행하면 보다 더 좋은 품질의 3D 모델을 얻을 수 있다.

  • PDF

A Method for Generation of Contour lines and 3D Modeling using Depth Sensor (깊이 센서를 이용한 등고선 레이어 생성 및 모델링 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In this study we propose a method for 3D landform reconstruction and object modeling method by generating contour lines on the map using a depth sensor which abstracts characteristics of geological layers from the depth map. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust contour and object can be extracted. The algorithm suggested in this paper first abstracts the characteristics of each geological layer from the depth map image and rearranges it into the proper order, then creates contour lines using the Bezier curve. Using the created contour lines, 3D images are reconstructed through rendering by mapping RGB images of the visual camera. Experimental results show that the proposed method using depth sensor can reconstruct contour map and 3D modeling in real-time. The generation of the contours with depth data is more efficient and economical in terms of the quality and accuracy.

Particle Filter Based Robust Multi-Human 3D Pose Estimation for Vehicle Safety Control (차량 안전 제어를 위한 파티클 필터 기반의 강건한 다중 인체 3차원 자세 추정)

  • Park, Joonsang;Park, Hyungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2022
  • In autonomous driving cars, 3D pose estimation can be one of the effective methods to enhance safety control for OOP (Out of Position) passengers. There have been many studies on human pose estimation using a camera. Previous methods, however, have limitations in automotive applications. Due to unexplainable failures, CNN methods are unreliable, and other methods perform poorly. This paper proposes robust real-time multi-human 3D pose estimation architecture in vehicle using monocular RGB camera. Using particle filter, our approach integrates CNN 2D/3D pose measurements with available information in vehicle. Computer simulations were performed to confirm the accuracy and robustness of the proposed algorithm.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Improving Camera Calibration Results Using Least Squares Method (최소제곱법을 활용한 카메라 캘리브레이션 결과 개선)

  • Park, Jung-Tak;Park, Byung-Seo;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.154-155
    • /
    • 2022
  • 본 논문에서는 RGB-D 카메라 캘리브레이션의 결과를 개선하는 새로운 기법을 제안한다. 멀티 뷰 카메라 캘리브레이션은 카메라를 통해 획득한 이미지에서 특징점을 찾아 다른 카메라에서 촬영된 동일한 특징점을 기준으로 캘리브레이션을 진행하는 것이 일반적이다. 그러나 카메라를 통해 획득된 RGB-D 영상은 필연적으로 렌즈와 Depth senor에 의한 오차가 포함되기 때문에 정확한 캘리브레이션 결과를 획득하는 것은 어려운 과정이다. 본 논문에서는 이를 개선하기 위해 획득한 특징점을 기반으로 캘리브레이션을 진행한 후, 최소제곱법을 통해 각 특징점간의 거리가 최소가 되는 카메라 파라미터를 획득하여 결과를 개선하는 기법을 제안한다.

  • PDF

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.

Method for Classification of Age and Gender Using Gait Recognition (걸음걸이 인식을 통한 연령 및 성별 분류 방법)

  • Yoo, Hyun Woo;Kwon, Ki Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1035-1045
    • /
    • 2017
  • Classification of age and gender has been carried out through different approaches such as facial-based and audio-based classifications. One of the limitations of facial-based methods is the reduced recognition rate over large distances, while another is the prerequisite of the faces to be located in front of the camera. Similarly, in audio-based methods, the recognition rate is reduced in a noisy environment. In contrast, gait-based methods are only required that a target person is in the camera. In previous works, the view point of a camera is only available as a side view and gait data sets consist of a standard gait, which is different from an ordinary gait in a real environment. We propose a feature extraction method using skeleton models from an RGB-D sensor by considering characteristics of age and gender using ordinary gait. Experimental results show that the proposed method could efficiently classify age and gender within a target group of individuals in real-life environments.

Development of a Reliable Real-time 3D Reconstruction System for Tiny Defects on Steel Surfaces (금속 표면 미세 결함에 대한 신뢰성 있는 실시간 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1061-1066
    • /
    • 2013
  • In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

Feature based Pre-processing Method to compensate color mismatching for Multi-view Video (다시점 비디오의 색상 성분 보정을 위한 특징점 기반의 전처리 방법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2527-2533
    • /
    • 2011
  • In this paper we propose a new pre-processing algorithm applied to multi-view video coding using color compensation algorithm based on image features. Multi-view images have a difference between neighboring frames according to illumination and different camera characteristics. To compensate this color difference, first we model the characteristics of cameras based on frame's feature from each camera and then correct the color difference. To extract corresponding features from each frame, we use Harris corner detection algorithm and characteristic coefficients used in the model is estimated by using Gauss-Newton algorithm. In this algorithm, we compensate RGB components of target images, separately from the reference image. The experimental results with many test images show that the proposed algorithm peformed better than the histogram based algorithm as much as 14 % of bit reduction and 0.5 dB ~ 0.8dB of PSNR enhancement.