• Title/Summary/Keyword: RGB ratio

Search Result 118, Processing Time 0.025 seconds

High-performance TDM-MIMO-VLC Using RGB LEDs in Indoor Multiuser Environments

  • Sewaiwar, Atul;Chung, Yeon-Ho
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.289-294
    • /
    • 2017
  • A high-performance time-division multiplexing (TDM) -based multiuser (MU) multiple-input multipleoutput (MIMO) system for efficient indoor visible-light communication (VLC) is presented. In this work, a MIMO technique based on RGB light-emitting diodes (LEDs) with selection combining (SC) is utilized for data transmission. That is, the proposed scheme employs RGB LEDs for parallel transmission of user data and transmits MU data in predefined slots of a time frame with a simple and efficient design, to schedule the transmission times for multiple users. Simulation results demonstrate that the proposed scheme offers an approximately 6 dB gain in signal-to-noise ratio (SNR) at a bit error rate (BER) of $3{\times}10^{-5}$, as compared to conventional MU single-input single-output (SISO) systems. Moreover, a data rate of 66.7 Mbps/user at a BER of $10^{-3}$ is achieved for 10 users in indoor VLC environments.

A Study for Color and Illuminance Control Algorithm of Broadcast LED Lighting (방송용 LED 조명의 광색과 조도 제어 알고리즘에 대한 연구)

  • Shin, Dong-Seok;Park, Chul-Hyung;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.6-17
    • /
    • 2015
  • In this paper, colors of broadcast lightings composed of Red, Green, and Blue LED(Light Emitted Diode) can be linearly and quantitatively controlled in low illuminance. Because LED cannot emit uniform illuminance in low illuminance, the colors of RGB LED are unmixable. Furthermore, the illuminances are nonlinear with the dimming values of the RGB LED due to the nonlinearity of the output illuminance with the current through the LED. This nonlinearity generated errors of the target colors and illuminances. The proposed algorithm set up the target colors, which is expressed by the color coordinates in CIE 1931 color space, and the target illuminances. Then the illuminances of RGB LED were calculated using color mixing theory. The calculated illuminances determined the dimming values of the RGB LED for transmission via DMX512 communication. After the broadcasting lighting received the dimming values of the RGB LED via DMX512 communication,.RGB LED can emit target color and illuminance, and be controlled by calculating the PWM(Pulse Width Modulation) duty ratio of the hybrid LED driver which be considered the nonlinearity for the illuminances of the LED. As a result, the proposed algorithm can linearly and quantitatively control the colors and illuminances in full range of illuminance. Then we verify experimentally that the errors of the emitted color coordination x, y and illuminance are 2.27%, 3.6% and 1.5%, respectively.

Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera (이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • Lim, Jong-Seok;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.317-326
    • /
    • 2004
  • This paper presents a new method for the detection of multiple pedestrians and tracking of a specific pedestrian using color information from a moving camera. We first extract motion vector on the input image using BMA. Next, a difference image is calculated on the basis of the motion vector. The difference image is converted to a binary image. The binary image has an unnecessary noise. So, it is removed by means of the proposed noise deletion method. Then, we detect pedestrians through the projection algorithm. But, if pedestrians are very adjacent to each other, we separate them using RGB color information. And we track a specific pedestrian using RGB color information in center region of it. The experimental results on our test sequences demonstrated the high efficiency of our approach as it had shown detection success ratio of 97% and detection failure ratio of 3% and excellent tracking.

Adaptive LSB Steganography for High Capacity in Spatial Color Images (컬러이미지 대상 고용량 적응형 LSB 스테가노그라피)

  • Lee, Haeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This paper presents a new adaptive LSB steganography for high capacity in spatial color images. The number of least signi ficant bit (LSB) of each RGB component in a color image pixel, to replace with the data bits to be hidden, was determine d through analysis of the worst case peak signal noise ratio (PSNR). In addition, the combination of the number of bits is determined adaptively according to image content. That is, 70% of the data to be hidden is proposed to be replaced with 3 bit LSB of two components, 2 bit LSB of the rest component, and 30% be replaced with 4 bit LSB of each RGB compon ent. To find edge areas in an image, delta sorting in local area is also suggested. Using the proposed method, the data cap acity is 9.2 bits per pixel (bpp). The average PSNR value of the tested images with concealed data of up to 60Kbyte was 43.9 db and also natural histograms were generated.

Effects of Neon Plasma Emission on Optical Properties of Phosphor Layers in Surface-Type Alternate Current Plasma Display Panel

  • Jang, Sang-Hun;Cho, Ki-Duck;Tae, Heung-Sik;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.171-174
    • /
    • 2000
  • This study uses neon and xenon gas mixture discharges to determine the effects of the neon plasma emission on the characteristics of visible emission from the stimulation of the red, green, blue(RGB) phosphor layers in a surface-type alternate current plasma display panel(AC PDP). With a mixture of less than 2% xenon to neon, it is found that the luminance changes in the visible emission of the phosphor layers are similar to those of the neon plasma emission. In the range of xenon mix ratio from 2 to 5%, the luminance of the red, green, blue(RGB) phosphor layers decreases with a decrease in the neon plasma emission intensity. However, with a mixture of above 5% xenon to neon, the luminance of the red, green, blue(RGB) phosphor layers increases regardless of a decrease in the neon plasma emission intensity. Furthermore, the color purity of the red, green, blue(RGB) phosphor layers improve as the neon plasma emission intensity decreases. Accordingly, it is concluded that the optical properties of the phosphor layers, including color purity and luminance, depend on the neon plasma discharge emission as well as the visible emission from the stimulation of the phosphor layers.

  • PDF

System Implementation for Generating High Quality Digital Holographic Video using Vertical Rig based on Depth+RGB Camera (Depth+RGB 카메라 기반의 수직 리그를 이용한 고화질 디지털 홀로그래픽 비디오 생성 시스템의 구)

  • Koo, Ja-Myung;Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.964-975
    • /
    • 2012
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. A digital hologram can be generated with a depth and a RGB image. We proposed a new system to capture RGB and depth images and to convert them to digital holograms. First a new cold mirror was designed and produced. It has the different transmittance ratio against various wave length and can provide the same view and focal point to the cameras. After correcting various distortions with the camera system, the different resolution between depth and RGB images was adjusted. The interested object was extracted by using the depth information. Finally a digital hologram was generated with the computer generated hologram (CGH) algorithm. All algorithms were implemented with C/C++/CUDA and integrated in LabView environment. A hologram was calculated in the general-purpose computing on graphics processing unit (GPGPU) for high-speed operation. We identified that the visual quality of the hologram produced by the proposed system is better than the previous one.

Improving the QoS using the Modulation and Coding Selection scheme by temperature characteristic of LED in the LED-ID system (LED-ID 시스템에서 LED의 온도 특성에 따른 선택적 변조 및 부호화를 통한 QoS 향상 기법 연구)

  • Lee, Kyu-Jin;Seo, Hyo-Duck;Han, Doo-Hee;Lee, Kye-San
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.66-74
    • /
    • 2013
  • This paper introduces the improvement of QoS to compensate the decreasing LED performance by temperature characteristic in the LED-ID communication system. LED does not only use as a lighting device, but also uses as a communication device. The conventional system is transmitted by RGB of LED following the mixture color ratio, which determined the color of lighting, and the BER performance of each RGB signals. However, when the LED used consistently, it has occurred the heat temperature. As a result, LED is degraded the performance by increased temperature each device. To solve this problem, we proposed the adaptive modulation and coding scheme by temperature of device to improve the performance of system and satisfied the QoS in the LED-ID system.

The Relationship between Weathering Degree and Reflectance of Laser Scanner Considering RGB Value (RGB 값을 고려한 레이저 스캐너 반사율과 풍화도의 관계에 대한 연구)

  • Yoo, Wan-Kyu;Kim, Jinhwan;Kim, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7182-7188
    • /
    • 2015
  • Recently, to improve manual mapping method, digital mapping using high-resolution camera and laser scanner has increasingly attracted attention and the relevant study is reportedly on the rise. In this study, laboratory and field test which are intended to quantitatively analyze and estimate the weathering degree which is one of the engineering characteristics of tunnel face using laser scanner that integrates high-solution imaging technique have been conducted. In a bid to analyze correlation between reflectance of laser scanner and weathering degree, investigation of the factors influencing on reflectance was carried out. And to minimize the effect on RGB value which is one the critical influential factors on reflectance, modification equation obtained from lab test was proposed. Modification equation proposed in this study was verified by comparing the values before and after correction using the data obtained by scanning. Consequently, weathering index estimated by modified reflectance appeared very similar with dominant weathering degree and weathering ratio monitored at the field.

Aerosol-extinction Retrieval Method at Three Effective RGB Wavelengths Using a Commercial Digital Camera (상용 디지털 카메라를 이용한 3가지 유효 RGB 파장에서의 미세먼지 소산계수 산출법)

  • Park, Sunho;Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.71-80
    • /
    • 2020
  • In this article, we suggest a new method for measuring an aerosol's extinction coefficient using a commercial camera. For a given image, we choose three pixel-points that are imaged for the same kinds of objects located in similar directions. We suggest and calculate aerosol extinction coefficients from these RGB gray levels and the different distances of the three objects. To compare our measurement results, we also measure extinction coefficients using lidar. Finally, we find that there are meaningful and sensible correlations between these two measurements, with a correlation coefficient of 0.86. We measure the aerosol extinction coefficient at three different RGB wavelengths using the same method. From these aerosol extinction coefficients at three different wavelengths, we find that the Angstrom exponent ranges from 0.7 to 1.6 over a full daytime period. We believe that these Angstrom exponents can give important information about the size of the fine particles.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.