• Title/Summary/Keyword: RGB Color Coordinates

Search Result 32, Processing Time 0.023 seconds

Color Inspection System for Plasma Display Panel by Using Area Camera (영역 카메라를 이용한 플라즈마 디스플레이의 컬러출력 검사 시스템)

  • 김우섭;도현철;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1763-1766
    • /
    • 2003
  • This paper proposes a non-contact color inspection system for plasma display panel (PDP). The red, green, and blue test pattern images are acquired by using the area color CCD camera at the various distance from the PDP. The RGB values are obtained from the region of interest (ROI) which are extracted by applying the image processing to the test pattern image. Finally, the CIE xy and u'v' chromaticity coordinates of the test pattern images according to the distance are acquired from the RGB color coordinates.

  • PDF

Color Compensation Method for Non-Contact Color Inspection on Plasma Display Panel (플라즈마 디스플레이 패널에서 비접촉식 칼라 검사를 위한 칼라 보정 방법)

  • 도현철;김우섭;진성일;태흥식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.71-75
    • /
    • 2004
  • An efficient color compensation method is proposed to reduce the color difference between the camera based inspection system and the colorimeter based inspection system in a plasma display panel production line. The color compensation matrix can be constructed by using the relationship between RGB to XYZ conversion matrices, which are obtained by the RGB primaries and reference white chromaticity coordinates. Experimental results show that the non-contact color inspection system using the proposed color compensation method satisfactorily compensates the chromaticity coordinates acquired by the area color CCD camera to be matched to those measured by the colorimeter for various test color.

Image Generator Design for OLED Panel Test (OLED 패널 테스트를 위한 영상 발생기 설계)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this paper, we propose an image generator for OLED panel test that can compensate for color coordinates and luminance by using panel defect inspection and optical measurement while displaying images on OLED panel. The proposed image generator consists of two processes: the image generation process and the process of compensating color coordinates and luminance using optical measurement. In the image generating process, the panel is set to receive the panel information to drive the panel, and the image is output by adjusting the output setting of the image generator according to the panel information. The output form of the image is configured by digital RGB method. The pattern generation algorithm inside the image generator outputs color and gray image data by transmitting color data to a 24-bit data line based on a synchronization signal according to the resolution of the panel. The process of compensating color coordinates and luminance using optical measurement outputs an image to an OLED panel in an image generator, and compensates for a portion where color coordinates and luminance data measured by an optical module differ from reference data. To evaluate the accuracy of the image generator for the OLED panel test proposed in this paper, Xilinx's Spartan 6 series XC6SLX25-FG484 FPGA was used and the design tool was ISE 14.5. The output of the image generation process was confirmed that the target setting value and the simulation result value for the digital RGB output using the oscilloscope matched. Compensating the color coordinates and luminance using optical measurements showed accuracy within the error rate suggested by the panel manufacturer.

A Study of Nonlinear Color Conversion by Neural Networks (신경망을 이용한 비선형 색 변환에 관한 연구)

  • 김석철
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.2
    • /
    • pp.115-128
    • /
    • 1996
  • In this paper, we describe the Color Correction and Preferred Skin Color Reproduction in a ink-jet color printer. The fundamental color correction that converts RGB densities into GMY densities has been ordinarily used. This method can reduce the hue error, but color difference between the preferred skin colors and hardcopy skin colors are large. We have been able to reduce color differences between original skin color and hardcopy skin color by transforming hardcopy skin colors` coordinates into Preferred Skin Colors` coordinates. Experimental results show that the described method is useful and valid for the skin color reproduction in a digital color printer.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

Digital Image Analysis(DIA) of Color Changes in Field Growing Stages for Rice (벼의 성장단계별 색 변화에 관한 디지털 화상해석)

  • Park, Jong-Hwa;Shin, Yong-Hee;Park, Min-Seo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.623-626
    • /
    • 2003
  • Image analysis was performed with two color systems, Red-Green-Blue (RGB) values and normalized Hue-Saturation-Intensity (HSI). We conducted field studies in Cheongju to determine canopy spectral reflectance and digital image analysis of rice. Spectral reflectance measurements made with a portable spectrometer(LI-1800) correlated with growing stage and digital images for rice. Images in which the color was specified by the common RGB coordinates could be used when there was a sharp contrast between the color of the rice and that of the field soil. In the absence of sharp contrast, identification of the rice covered area was much easer after the color had been transformed into HSI coordinates. This study introduced fundamental theories in digital image analysis and applied that for field situations rice.

  • PDF

A Study for Color and Illuminance Control Algorithm of Broadcast LED Lighting (방송용 LED 조명의 광색과 조도 제어 알고리즘에 대한 연구)

  • Shin, Dong-Seok;Park, Chul-Hyung;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.6-17
    • /
    • 2015
  • In this paper, colors of broadcast lightings composed of Red, Green, and Blue LED(Light Emitted Diode) can be linearly and quantitatively controlled in low illuminance. Because LED cannot emit uniform illuminance in low illuminance, the colors of RGB LED are unmixable. Furthermore, the illuminances are nonlinear with the dimming values of the RGB LED due to the nonlinearity of the output illuminance with the current through the LED. This nonlinearity generated errors of the target colors and illuminances. The proposed algorithm set up the target colors, which is expressed by the color coordinates in CIE 1931 color space, and the target illuminances. Then the illuminances of RGB LED were calculated using color mixing theory. The calculated illuminances determined the dimming values of the RGB LED for transmission via DMX512 communication. After the broadcasting lighting received the dimming values of the RGB LED via DMX512 communication,.RGB LED can emit target color and illuminance, and be controlled by calculating the PWM(Pulse Width Modulation) duty ratio of the hybrid LED driver which be considered the nonlinearity for the illuminances of the LED. As a result, the proposed algorithm can linearly and quantitatively control the colors and illuminances in full range of illuminance. Then we verify experimentally that the errors of the emitted color coordination x, y and illuminance are 2.27%, 3.6% and 1.5%, respectively.

Construction of Confusion Lines for Color Vision Deficiency and Verification by Ishihara Chart

  • Cho, Keuyhong;Lee, Jusun;Song, Sanghoon;Han, Dongil
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.272-280
    • /
    • 2015
  • This paper proposes color databases that can be used for various purposes for people with a color vision deficiency (CVD). The purpose of this paper is to group colors within the sRGB gamut into the CIE $L^*a^*b^*$ color space using the Brettel algorithm to simulate the representative colors of each group into colors visible to people with a CVD, and to establish a confusion line database by comparing colors that might cause confusion for people with different types of color vision deficiency. The validity of the established confusion lines were verified by using an Ishihara chart. The different colors that confuse those with a CVD in an Ishihara chart are located in the same confusion line database for both protanopia and deutanopia. Instead of the 3D RGB color space, we have grouped confusion colors to the CIE $L^*a^*b^*$ space coordinates in a more distinctive and intuitive manner, and can establish a database of colors that can be perceived by people with a CVD more accurately. Editor - Highlight - Do these changes reflect the intended meaning? If not, please rephrase as intended.

RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn

  • Song, Byungkwan;Heo, Jeongho;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3601-3608
    • /
    • 2014
  • RGB light emitting ZnSe based nanocrystals: ZnSe (blue), ZnSe:Cu (green) and ZnSe:Mn (red) were synthesized by capping the surface of the nanocrystals with oleic acid. The obtained nanocrystal powders were characterized by using XRD, HR-TEM, ICP-AES, FT-IR, and FT-Raman spectroscopies. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 471 nm (ZnSe), 530 nm (ZnSe:Cu) and 665 nm (ZnSe:Mn), with relative PL efficiencies in the range of 0.7% to 5.1% compared to a reference organic dye standard. The measured average particle sizes from the HR-TEM images for those three nanocrystals were 4.5 nm on average, which were also supported well by the Debye-Scherrer calculations. The elemental compositions of the ZnSe based nanocrystals were determined by ICP-AES analyses. Finally, the drawn CIE diagram showed the color coordinates of (0.15, 0.16) for ZnSe, (0.22, 0.57) for ZnSe:Cu, and (0.62, 0.35) for ZnSe:Mn respectively, which were fairly well matched to that of the RGB color standards.