• 제목/요약/키워드: RGB 카메라

검색결과 273건 처리시간 0.023초

디지털 카메라 색 특성분석을 통한 sRGB 이미지 생성 (Making of sRGB image through digital camera colorimetric characterization)

  • 유종우;김홍석;박승옥;박철호;박진희
    • 한국광학회지
    • /
    • 제15권2호
    • /
    • pp.183-189
    • /
    • 2004
  • 고화질 디지털 카메라가 널리 보급되면서 디지털 카메라는 단순한 영상 기록 장치가 아닌 정보 저장 매체로써 다양한 분야에서 사용되고 있다. 그러나 디지털 카메라의 분광 감도가 표준 관측자의 색 일치 함수와 다르기 때문에 카메라로는 색이 정확하게 측정될 수 없다. 본 연구는 카메라 이미지를 피사체의 색 정보를 지니고 있는 sRGB 이미지로 변환하는 방법에 관한 것이다. 디지털 카메라의 출력 신호와 CIE 삼자극치간의 변환 행렬은 Macbeth ColorChecker 24색을 기준 색으로 하여 다중 회귀법을 사용하여 구하였다. 변환 행렬을 이용하여 카메라의 출력 신호로부터 피사체의 실제 색을 찾아내어 이상적인 sRGB 표준 모니터에 정확하게 나타낼 수 있는 RGB 데이터로 변환하였다. Kodak DC220 디지털 카메라로 생성된 Macbeth ColorChecker의 sRGB 이미지와 실제 색과의 평균 색차는 2.1 $\Delta$ $E_{ab}$ $^{*}$ 시험 색표로 사용된 IT8 Reference KIT(286색)의 sRGB 이미지와 실제 색과의 평균 색차는 4.6 $\Delta$ $E_{ab}$ $^{*}$ 로 계산되었다. ab/$^{*}$ 로 계산되었다.

구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정 (Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object)

  • 박순용;최성인
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.309-314
    • /
    • 2014
  • 물체의 360도 방향에서 다수의 RGB-D(RGB-Depth) 카메라를 이용하여 깊이영상을 획득하고 3차원 모델을 생성하기 위해서는 RGB-D 카메라 간의 3차원 변환관계를 구하여야 한다. 본 논문에서는 구형 물체를 이용하여 4대의 RGB-D 카메라 사이의 변환관계를 간편하게 구할 수 있는 시점보정(view calibration) 방법을 제안한다. 기존의 시점보정 방법들은 평면 형태의 체크보드나 코드화된 패턴을 가진 3차원 물체를 주로 사용함으로써 패턴의 특징이나 코드를 추출하고 정합하는 작업에 상당한 시간이 걸린다. 본 논문에서는 구형 물체의 깊이영상과 사진영상을 동시에 사용하여 간편하게 시점을 보정할 수 있는 방법을 제안한다. 우선 하나의 구를 모델링 공간에서 연속적으로 움직이는 동안 모든 RGB-D 카메라에서 구의 깊이영상과 사진영상을 동시에 획득한다. 다음으로 각 RGB-D 카메라의 좌표계에서 획득한 구의 3차원 중심좌표를 월드좌표계에서 일치되도록 각 카메라의 외부변수를 보정한다.

카메라의 내부 파라미터를 고려한 수렴형 다중 깊이 지도의 정렬 (Alignment of Convergent Multi-view Depth Map in Based on the Camera Intrinsic Parameter)

  • 이강훈;박종일;신홍창;방건
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.457-459
    • /
    • 2015
  • 본 논문에서는 원의 호 곡선에 따라 배치된 다중 RGB 카메라 영상으로 생성한 깊이 지도를 정렬하는 방법을 제안한다. 원의 호 곡선에 따라 배치된 카메라는 각 카메라의 광축이 한 점으로 만나서 수렴하는 형태가 이상적이다. 그러나 카메라 파라미터를 살펴보면 광축이 서로 수렴하지 않는다. 또한 카메라 파라미터는 오차가 존재하고 내부 파라미터도 서로 다르기 때문에 각 카메라 영상들은 수평과 수직 오차가 발생한다. 이와 같은 문제점을 해결하기 위해 첫 번째로 광축이 한 점으로 수렴하기 위해서 카메라 외부 파라미터를 보정하여 깊이 영상 정렬을 하였다. 두 번째로 내부 파라미터를 수정하여 각 깊이 영상들의 수평과 수직 오차를 감소시켰다. 일반적으로 정렬된 깊이 지도를 얻기 위해서는 초기 RGB 카메라 영상으로 정렬을 수행하고 그 결과 영상으로 깊이 영상을 생성한다. 하지만 RGB 영상으로 카메라의 회전과 위치를 보정하여 정렬하면 카메라 위치 변화에 따른 깊이 지도 변화값 적용이 복잡해 진다. 즉 정렬 계산 과정에서 소수점 단위 값이 사라지기에 최종 깊이 지도의 값에 영향을 미친다. 그래서 RGB 영상으로 깊이 지도를 생성하고 그것을 처음 RGB 카메라 파라미터로 워핑(warping)하였다. 그리고 워핑된 깊이 지도 값을 가지고 정렬을 수행하였다.

  • PDF

RGB-Depth 카메라 기반의 실내 연기검출 (Smoke Detection Based on RGB-Depth Camera in Interior)

  • 박장식
    • 한국전자통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.155-160
    • /
    • 2014
  • 본 논문에서 RGB-Depth 카메라를 이용하여 실내에서의 연기를 검출하는 알고리즘을 제안한다. RGB-Depth 카메라는 RGB 색영상과 깊이 정보를 제공한다. 키넥트(Kinect)는 특정한 패턴의 적외선을 출력하고 이를 적외선 카메라로 수집하고 분석하여 깊이 정보를 획득한다. 특정한 패턴을 구성하는 점들 각각에 대하여 거리를 측정하고 객체면의 깊이를 추정한다. 따라서, 이웃하는 점들의 깊이 변화가 많은 객체인 경우에는 객체면의 깊이를 결정하지 못한다. 연기의 농도가 일정 주파수로 변화하고, 적외선 영상의 이웃하는 화소간의 변화가 많기 때문에 키넥트가 깊이를 결정하지 못한다. 본 논문에서는 연기에 대한 키넥트의 특성을 이용하여 연기를 검출한다. 키넥트가 깊이를 결정하지 못한 영역을 후보영역으로 설정하고, 색영상의 밝기가 임계값보다 큰 경우 연기영역으로 결정한다. 본 논문에서는 시뮬레이션을 통하여 실내에서의 연기 검출에 RGB-Depth 카메라가 효과적임을 확인할 수 있다.

체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘 (Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects)

  • 김경진;박병서;김동욱;서영호
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.765-774
    • /
    • 2019
  • 본 논문에서는 다중 RGB-D 카메라의 포인트 클라우드 정합 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 문제에 많은 관심을 두고 있다. 기존의 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3D Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 기존의 방식은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라 8대를 사용하여 전방위 3차원 모델을 생성하기 위해 깊이 이미지와 함수 최적화 방식을 이용하여 유효한 범위 내의 오차를 갖는 좌표 변환 파라미터를 구하는 방식을 제안한다.

다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성 (Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera)

  • 김경진;박병서;김동욱;권순철;서영호
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.439-448
    • /
    • 2020
  • 본 논문에서는 다시점 RGB-D 카메라의 포인트 클라우드 정합을 위한 수정된 최적화 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 것은 매우 중요하다. 기존의 연구에서 제안된 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3차원 Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 방식들은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라를 8개 사용하여 전방위 자유시점을 제공할 수 있는 3차원 포인트 클라우드 및 매쉬 모델을 생성하기 위한 정합 기법을 제안하고자 한다. RGB영상과 함께 깊이지도 기반의 함수 최적화 방식을 이용하고, 초기 파라미터를 구하지 않으면서 고품질의 3차원 모델을 생성할 수 있는 좌표 변환 파라미터를 구하는 방식을 제안한다.

RGB-D 영상으로 복원한 점 집합을 위한 고화질 텍스쳐 추출 (High-quality Texture Extraction for Point Clouds Reconstructed from RGB-D Images)

  • 서웅;박상욱;임인성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권3호
    • /
    • pp.61-71
    • /
    • 2018
  • RGB-D 카메라 촬영 영상에 대한 카메라 포즈 추정을 통하여 복원한 3차원 전역 공간의 점 집합으로부터 삼각형 메쉬를 생성할 때, 일반적으로 메쉬의 크기가 커질수록 3차원 모델의 품질 또한 향상된다. 하지만 어떤 한계를 넘어서 삼각형 메쉬의 해상도를 높일 경우, 메모리 요구량의 과도한 증가나 실시간 렌더링 성능저하 문제뿐만 아니라 RGB-D 센서의 정밀도 한계로 인한 접 집합 데이터의 노이즈에 민감해지는 문제가 발생한다. 본 논문에서는 실시간 응용에 적합한 3차원 모델 생성을 위하여 비교적 적은 크기의 삼각형 메쉬에 대하여 3차원 점 집합의 촬영 색상으로부터 고화질의 텍스쳐를 생성하는 기법을 제안한다. 특히 카메라 포즈 추정을 통하여 생성한 3차원 점 집합 공간과 2차원 텍스쳐 공간 간의 매핑 관계를 활용한 간단한 방법을 통하여 RGB-D 카메라 촬영 영상으로부터 복원한 3차원 모델에 대하여 효과적으로 텍스쳐를 생성할 수 있음을 보인다.

체적형 객체의 촬영을 위한 깊이 및 RGB 카메라 기반의 카메라 자세 추정 알고리즘 (Depth and RGB-based Camera Pose Estimation for Capturing Volumetric Object)

  • 김경진;김동욱;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.123-124
    • /
    • 2019
  • 본 논문에서는 다중 깊이 및 RGB 카메라의 캘리브레이션 최적화 알고리즘을 제안한다. 컴퓨터 비전 분야에서 카메라의 자세 및 위치를 추정하는 것은 꼭 필요한 과정 중 하나이다. 기존의 방법들은 핀홀 카메라 모델을 이용하여 카메라 파라미터를 계산하기 때문에 오차가 존재한다. 따라서 이 문제점을 개선하기 위해 깊이 카메라에서 얻은 물체의 실제 거리와 함수 최적화 방식을 이용하여 카메라 외부 파라미터의 최적화를 진행한다. 이 알고리즘을 이용하여 카메라 간의 정합을 진행하면 보다 더 좋은 품질의 3D 모델을 얻을 수 있다.

  • PDF

RGB-D 카메라 기반 실시간 3차원 복원기술 동향 (Recent Trends of Real-time 3D Reconstruction Technology using RGB-D Cameras)

  • 김영희;박지영;이준석
    • 전자통신동향분석
    • /
    • 제31권4호
    • /
    • pp.36-43
    • /
    • 2016
  • 실 환경에 존재하는 모든 것을 3차원 모델로 쉽게 복원할 수 있을 것이라는 생각과 원격지에 있는 환경과 사람을 같은 공간에 있는 듯 상호작용할 수 있게 된 것은 그리 오래되지 않았다. 이는 일정 해상도를 보장해주는 RGB-D 센서의 개발과 이러한 센서들을 사용한 3차원 복원 관련 연구들이 활발히 수행되면서 가능하게 되었다. 본고에서는 널리 쓰이고 있는 RGB-D 카메라를 사용하여 실시간으로 때로는 온라인상에서 3차원으로 복원하고 가시화하는 기술에 대하여 살펴보고자 한다. 하나 또는 여러 개의 RGB_D 카메라를 사용하거나 모바일 장치에 장착된 RGB-D 센서를 사용하여 넓은 공간, 움직이는 사람, 온라인 상태의 환경 등을 실시간으로 복원하기 위한 기술들을 세부적으로 설명한다. 또한, 최근에 발표된 기술들이 다루고 있는 이슈들을 설명하고 향후 3차원 복원기술의 연구개발 방향에 대해서 논의한다.

  • PDF

위치 정보 인코딩 기반 ISP 신경망 성능 개선 (Enhancing A Neural-Network-based ISP Model through Positional Encoding)

  • 김대연;김우혁;조성현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.81-86
    • /
    • 2024
  • 영상 신호 프로세서(Image Signal Processor, ISP)는 카메라 센서로부터 획득된 RAW 영상을 사람의 눈에 보기 좋은 sRGB 영상으로 변환한다. RAW 영상은 sRGB 영상에 비해 영상 처리에 도움이 되는 정보를 가지고 있지만 상대적으로 큰 용량으로 인해 주로 sRGB 영상만 저장되고 사용된다. 또한, 실제 카메라의 ISP 과정이 공개되어 있지 않아 그 역과정을 모사하는 것은 매우 어렵다. 이에 sRGB와 RAW 영상의 상호 변환을 위한 카메라 ISP 모델링 연구가 활발히 진행되고 있으며, 최근 기존의 단순한 ISP 신경망 구조를 고도화하고 실제 카메라 ISP의 동작과 유사하게 카메라 파라미터(노출 시간, 감도, 조리개 크기, 초점 거리)를 직접 반영하는 ParamISP[1] 모델이 제안되었다. 하지만 ParamISP[1]를 포함한 기존의 연구는 카메라 ISP를 모델링함에 있어 렌즈로 인해 발생하는 렌즈 쉐이딩(Lens Shading), 광학 수차(Optical Aberration), 렌즈 왜곡(Lens Distortion) 등을 고려하지 않아 복원 성능에 한계가 있다. 본 연구는 ISP 신경망이 렌즈로 인해 발생하는 열화를 보다 잘 다룰 수 있도록 위치 정보 인코딩(Positional Encoding)을 도입한다. 제안하는 위치 정보 인코딩 기법은 영상을 분할하여 패치(Patch) 단위로 학습하는 카메라 ISP 신경망에 적합하며 기존 모델에 비해 영상의 공간적 맥락을 반영할 수 있어 더욱 정교한 영상 복원을 가능하게 한다.