Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.667-670
/
2020
최근에는 증강현실, 로봇공학 등의 분야에서 객체의 위치 검출 이외에도, 객체의 자세에 대한 추정이 요구되고 있다. 객체의 자세 정보가 포함된 데이터셋은 위치 정보만 포함된 데이터셋에 비하여 상대적으로 매우 적기 때문에 인공 신경망 구조를 활용하기 어려운 측면이 있으나, 최근에 들어서는 기계학습 기반의 자세 추정 알고리즘들이 여럿 등장하고 있다. 본 논문에서는 이 가운데 Dense 6d Pose Object detector (DPOD) [11]의 구조를 기반으로 하여 가구의 조립 설명서에 그려진 가구 부품들의 자세를 추정하고자 한다. DPOD [11]는 입력으로 RGB 영상을 받으며, 해당 영상에서 자세를 추정하고자 하는 객체의 영역에 해당하는 픽셀들을 추정하고, 객체의 영역에 해당되는 각 픽셀에서 해당 객체의 3D 모델의 UV map 값을 추정한다. 이렇게 픽셀 개수만큼의 2D - 3D 대응이 생성된 이후에는, RANSAC과 PnP 알고리즘을 통해 RGB 영상에서의 객체와 객체의 3D 모델 간의 변환 관계 행렬이 구해지게 된다. 본 논문에서는 사전에 정해진 24개의 자세 후보들을 기반으로 가구 부품의 3D 모델을 2D에 투영한 RGB 영상들로 인공 신경망을 학습하였으며, 평가 시에는 실제 조립 설명서에서의 가구 부품의 자세를 추정하였다. 실험 결과 IKEA의 Stefan 의자 조립 설명서에 대하여 100%의 ADD score를 얻었으며, 추정 자세가 자세 후보군 중 정답 자세에 가장 근접한 경우를 정답으로 평가했을 때 100%의 정답률을 얻었다. 제안하는 신경망을 사용하였을 때, 가구 조립 설명서에서 가구 부품의 위치를 찾는 객체 검출기(object detection network)와, 각 개체의 종류를 구분하는 객체 리트리벌 네트워크(retrieval network)를 함께 사용하여 최종적으로 가구 부품의 자세를 추정할 수 있다.
A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.
In this paper, we have studied the color compensation method for 3D that enables 3D color presentation similar to 2D. The color compensation method uses the difference of color presentation in 2D and 3D mode. First, the RGB I/O relationship curve was derived in 2D and 3D mode based on the input RGB color bar images. The relationship was modeled in modified power-law forms. Based on the modeling information, we generated color mapping tables, which can be used for compensating the difference of colors. The proposed color mapping block can be added at the output block of a 3DTV system, where the 2D content can be bypassed but the 3D content RGB data can be processed using the color mapping table. The experimental results show that the proposed method improves color presentation of a 3DTV system using a proper color compensation based on 2D presentation.
Journal of the Korean Association of Geographic Information Studies
/
v.1
no.1
/
pp.109-117
/
1998
To obtain new information using a single remotely sensed image data is limited to extract various information. Recent trends in the remote sensing show that many researchers integrate and analyze many different forms of remotely sensed data, such as optical and radar satellite images, aerial photograph, airborne multispectral scanner data and land spectral scanners. Korean researchers have not been using such a combined dataset yet. This study intended to apply the technique of integration between optical data and radar data(SAR) and to examine the output that had been obtained through the technique of supervised classification using the result of integration. As a result, we found of better enhanced image classification results by using IHS conversion than by using RGB mixed and interband correlation.
Journal of the Korea Society of Computer and Information
/
v.13
no.5
/
pp.19-26
/
2008
In this paper, we converted an RGB into an YCbCr image input from CCD camera and then after compute difference two consecutive images, conduct Glassfire Labeling. We extract an image become ware of motion-change, if the difference between most broad(area) and Area critical value more than critical value. We enforce the detection of facial characteristics to an extracted motion-change images by using AdaBoost algorithm to extract an characteristics.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.101-102
/
2016
본 논문에서는 차량의 특징점들 사이의 간격과 크기의 비례식으로 자동차의 차종을 식별하는 방법을 제시한다. 자동차 관련 영상은 그 편의성을 위하여 기본 RGB모델에서 Gray색상 모델로 변환시켜 사용한다. 자동차의 배경 제거는 Canny Edge Direction을 통하여 수행하고 외곽선 검을을 통하여 원하는 특징 점을 얻는다.
This paper proposed to a detection scheme of weather information that is a part of CCTV Images Weather Detection System using CCTV images and Temperature, Humidity. The previous Partial Weather Detection System uses how to acquire weather information using images on the Road. In the system the contrast and RGB Values using clear images are gained. This information is distributed a input images to cloud, rain, snow and fog images. That is, this information is compared the snow and the fog images for acquisition more correctness information us ing difference images and binary images. Currently, We use to environment sense system, but we suggest a new Weather Detection Algorithm to detect weather information using CCTV images. Our algorithm is designed simply and systematically to detect and separate special characteristics of images from CCTV images. and using temperature & humidity in formation. This algorithm, there is more complex to implement than how to use DB with high overhead of time and space in the previous system. But our algorithm can be implement with low cost' and can be use the system in real work right away. Also, our algorithm can detect the exact information of weather with adding in formation including temperature, humidity, date, and time. At last, this paper s how the usefulness of our algorithm.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.242-243
/
2011
구조광을 이용하는 깊이 정보 획득 방법에서 코드화된 패턴의 색상 정보는 촬영된 영상으로부터 패턴을 해석하여 패턴의 위상 변화량으로부터 물체의 깊이 정보를 찾기 위함으로 구조광 패턴들이 대상에 정확하게 투영되는 것이 중요하다. 그러나 프로젝터의 특성에 따라 패턴의 RGB 채널들이 종종 좌표에서 어긋나는 현상이 발생하게 된다. 본 논문에서는 프로젝터의 특성에 따른 컬러 구조광의 캘리브레이션을 위한 방법을 제안한다. 제안하는 방법은 시변화 가시구조광 시스템의 캘리브레이션 과정 중에서 투사된 영상으로부터 RGB 패턴 채널을 추출하고, 추출된 패턴으로부터 각 RGB 채널에 대한 히스토그램을 통하여 패턴 채널이 어느 방향으로 번져 나갔는지를 파악하여 원 패턴에 대한 재정렬을 수행한다. 본 논문의 실험결과에 따르면, 기존의 방법에 비해 간단한 방법으로 가시구조광 패턴에 대한 캘리브레션을 수행할 수 있음을 보여준다.
Proceedings of the Korea Information Processing Society Conference
/
2000.10b
/
pp.915-918
/
2000
본 논문에서는 색상정보를 이용한 얼굴 검출 알고리즘에 대해 소개하고자 한다. 여러 개의 얼굴 검출에 적용되는 이 알고리즘은 피부색의 학습 과정과 입력영상에 대한 얼굴 검출 과정으로 크게 두 가지로 나눌 수 있다. 특히 본 연구에서는 피부색이 본 논문에서 제안한 새로운 RGB 영역에서 직선을 이루는 특징을 이용하여 학습 data를 구성한다. 이렇게 구성된 data를 입력영상에 적용함으로써 1차 얼굴 후보영역을 결정한다. 그런 후 1차 후보영역을 세로방향과 가로방향으로 투영시킴으로써 최종 얼굴영역을 찾아낸다. 실험을 통해 이 알고리즘은 기존의 색상정보를 이용한 얼굴 검출 방법에 비해 얼굴개수에 상관없이 높은 검출 성공률을 보여주었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.33-35
/
2018
기존의 사람간의 유사성 측정 시스템은 적외선 빔이나 열 감지 영상 장치를 통해 측정하였다. 하지만 이와 같은 방법으로 측정하면 2명 이상의 객체를 분류해내는 기술은 제공하지 않는다. 이에 본 논문은 고정된 카메라를 이용하여 각 사람의 피부색과 옷차림 등의 RGB 정보를 이용한 사람 유사성 측정 기법을 제안한다. RGB카메라 영상을 통하여 객체의 RGB 히스토그램을 얻은 후 각 객체에 대해 Bhattacharyya metric, Cosine similarity, Jensen difference, Euclidean distance로 histogram similarity를 계산하여 객체 추적 및 유사성 측정을 통해 객체를 분류한다. 제안된 시스템은 C/C++를 기반으로 구현하여, 유사성 측정 성능을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.