• 제목/요약/키워드: RG3

검색결과 824건 처리시간 0.03초

Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time

  • Kim, Chan Joong;Kim, Bo Mi;Kim, Cheon Suk;Baek, Jung Yeon;Jung, In Chan
    • 대한약침학회지
    • /
    • 제23권2호
    • /
    • pp.79-87
    • /
    • 2020
  • Objectives: Ginsenosides found in ginseng, and the hydrolysates derived from their conversion, exhibit diverse pharmacological characteristics [1]. These have been shown to include anti-cancer, anti-angiogenic, and anti-metastatic effects, as well as being able to provide hepatic and neuroprotective effects, immunomodulation, vasodilation, promotion of insulin secretion, and antioxidant activity. Therefore, the purpose of this study was to examine how quickly the ginsenosides decompose and what kinds of degradation products are created under physicochemical processing conditions that don't involve toxic chemicals or other treatments that may be harmful. Methods: The formation of ginsenoside-Rg2 and ginsenoside-Rg3 was examined. These demonstrated diverse pharmacological effects. Results: We also investigated physicochemical factors affecting their conversion. The heating temperatures and times yielding the highest concentration of ginsenosides (-Rb1, -Rb2, -Rc, -Rd, -Rf, -Rg1, and -Re) were examined. Additionally, the heating temperatures and rates of conversion of these ginsenosides into new 'ginseng saponins', were examined. Conclusion: In conclusion, obtained provide us with effective technology to control the concentration of both ginsenosides and the downstream converted saponins (ginsenoside-Rg2, Rg3, Rg5, and Rk1 etc.), as well as identifying the processing conditions which enable an enrichment in concentration of these compounds.

Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels

  • You, Long;Cha, Seunghwa;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.711-721
    • /
    • 2022
  • The immune system is one of the most important parts of the human body and immunomodulation is the major function of the immune system. In response to outside pathogens or high inflammation, the immune system is stimulated or suppressed. Thus, identifying effective and potent immunostimulants or immunosuppressants is critical. Ginsenosides are a type of steroid saponin derived from ginseng. Most are harmless to the body and even have tonic effects. In this review, we mainly focus on the immunostimulatory and immunosuppressive roles of two types ginsenosides: the protopanaxadiol (PPD)-type and protopanaxatriol (PPT)-type. PPT-type ginsenosides include Rg1, Rg2, Rh4, Re and notoginsenoside R1, and PPD-type ginsenosides include Rg3, Rh2, Rb1, Rb2, Rc, Rd, compound K (CK) and PPD, which activate the immune responses. In addition, Rg1 and Rg6 belong to PPT-type ginsenosides and together with Rg3, Rb1, Rd, CK show immunosuppressive properties. Current explorations of ginsenosides in immunological areas are in the preliminary stages. Therefore, this review may provide some novel ideas to researchers who study the immunoregulatory roles of ginsenosides.

붉은덕다리버섯 균사체로 발효한 홍삼 배양액의 cell migration 및 항염 효능에 관한 연구 (Cell migration and Anti-inflammatory Effect of Red Ginseng Extracts Fermented with Laetiporus Sulphureus)

  • 오성화;최수연;이누림;이정노;김동석;이상화;박성민
    • 대한화장품학회지
    • /
    • 제40권3호
    • /
    • pp.297-305
    • /
    • 2014
  • 홍삼(Red Ginseng; RG)은 인삼보다 더 높은 생체 흡수율과 다양한 약리효과를 갖는 특이한 진세노사이드(Rg2, Rg3)를 함유하고 있다. 따라서 오랫동안 많은 사람들의 건강을 위해 이용되어 왔다. 또한 발효는 유효한 생리활성을 갖는 저분자의 물질들을 생성하기 때문에 많은 연구자들이 생물학적 활성에 대해 오랫동안 연구해오고 있다. 본 연구에서는 홍삼을 붉은덕다리버섯 균사체로 7일 동안 발효하였다. HPLC 분석 결과 진세노사이드 Rg1, Re 및 Rb2가 각각 0.24, 0.25, 0.16 mg/g에서 0.12, 0.1, 0.03 mg/g으로 함량 감소를 확인하였고, 홍삼 붉은덕다리 균사체배양액(Fermented Red Ginseng; FRG)의 항염, 세포 이동, 항산화, 콜라겐 타입 I 합성과 MMP-1 억제효능에 대한 생물학적 효능을 확인하였다. 그 결과, FRG는 RG보다 항염 및 cell migration 촉진효과가 더 우수하였다. FRG는 LPS로 유도된 RAW 264.7 대식세포의 NO 생성을 억제하였으며, iNOS와 IL-6의 발현을 mRNA 수준에서 억제하였다. 이 결과로 FRG는 새로운 항염소재로서 제안이 가능하다고 사료된다.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway

  • Lu, Mei-Li;Wang, Jing;Sun, Yang;Li, Cong;Sun, Tai-Ran;Hou, Xu-Wei;Wang, Hong-Xin
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.683-694
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods: Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results: Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-b1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion: The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.

Inhibitory Effects of Ginsenoside Rb1,Rg3, and Panax ginseng Head Butanol Fraction on Inflammatory Mediators from LPS-Stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeong, Choon-Sik
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.277-285
    • /
    • 2008
  • Panax ginseng C.A. Mayer (Araliaceae, P. ginseng) has been used for the enhancement of vascular and immune functions in Korea and Japan for a long time. Ginsenoside $Rb_1$ and $Rg_3$ isolated from P. ginseng head-part butanolic extract (PGHB) were investigated for anti-inflammatory activity. Ginsenosides and PGHB did not affect the cell viability within $0\;-\;100\;{\mu}g/ml$ concentration to RAW 264.7 murine macrophage cells. Ginsenosides and PGHB inhibited partly lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner. The ginsenosides and PGHB showed partially chemical nitric oxide (NO) quenching (maximum 40%) in the cell-free system. Also, ginsenoside $Rb_1$ and $Rg_3$ inhibited markedly approximately 74 and 54% of inducible nitric oxide synthase (iNOS) mRNA transcription from LPS-induced RAW 264.7 cells. Taken together, the inhibitory effect of ginsenosides and PGHB on NO production did not occur as a result of cell viability, but was caused by both the chemical NO quenching and the regulation of iNOS. Additionally, the ginsenoside $Rb_1$ and PGHB inhibited prostaglandin $E_2$ ($PGE_2$) synthesis in a concentration-dependent manner, showed approximately 70-98% inhibition at $100\;{\mu}g/ml$ concentration. And the treatment with ginsenosides and PGHB attenuated partially LPS-upregulated cyclooxygenase-2 (COX-2) gene transcription. Ginsenoside $Rg_3$ suppressed LPS-stimulated interleukin-6 (IL-6) level to the basal in RAW 264.7 cells. From these results, ginsenoside $Rb_1,\;Rg_3$, and PGHB may be useful for the relief and retardation of immunological inflammatory responses and its action may occur through the reduction of inflammatory mediators, including NO, $PGE_2$, and IL-6 production.

Mediation of antiinflammatory effects of Rg3-enriched red ginseng extract from Korean Red Ginseng via retinoid X receptor α-peroxisome-proliferating receptor γ nuclear receptors

  • Saba, Evelyn;Irfan, Muhammad;Jeong, Dahye;Ameer, Kashif;Lee, Yuan Yee;Park, Chae-Kyu;Hong, Seung-Bok;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.442-451
    • /
    • 2019
  • Background: Ginseng has a wide range of beneficial effects on health, such as the mitigation of minor and major inflammatory diseases, cancer, and cardiovascular diseases. There are abundant data regarding the health-enhancing properties of whole ginseng extracts and single ginsenosides; however, no study to date has determined the receptors that mediate the effects of ginseng extracts. In this study, for the first time, we explored whether the antiinflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE) are mediated by retinoid X receptor ${\alpha}$-peroxisome-proliferating receptor ${\gamma}$ ($RXR{\alpha}-PPAR{\gamma}$) heterodimer nuclear receptors. Methods: Nitric oxide assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, quantitative reverse transcription polymerase chain reaction, nuclear hormone receptor-binding assay, and molecular docking analyses were used for this study. Results: Rg3-RGE exerted antiinflammatory effects via nuclear receptor heterodimers between $RXR{\alpha}$ and $PPAR{\gamma}$ agonists and antagonists. Conclusion: These findings indicate that Rg3-RGE can be considered a potent antiinflammatory agent, and these effects are likely mediated by the nuclear receptor $RXR{\alpha}-PPAR{\gamma}$ heterodimer.

수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현 (Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70)

  • 민병화;허준욱;박형준
    • 생명과학회지
    • /
    • 제28권6호
    • /
    • pp.639-647
    • /
    • 2018
  • 한국의 고급 양식대상 어종인 붉바리(Epinephelus akaara)로부터 새로운 heat shock protein (Hsp) 70을 동정하였다. 붉바리 Hsp70 (RgHsp70)의 cDNA는 RACE (rapid amplification of cDNA ends)법을 사용하였고, RgHsp70 cDNA의 전장은 2,152 bp이고, 5'-terminal untranslated region (UTR)은 105 bp, 3'-terminal UTR은 274 bp, 590개의 아미노산을 암호화하는 open reading frame (ORF)는 1,773 bp였으며, 분자무게(molecular weight)는 64.9 kDa 및 등전위값(isoelectric point, pI)은 5.2였다. 추정되는 아미노산 비교 및 계통발생학적 분석 결과, 다른 어종과 마찬가지로 Hsp70 고유의 signature를 포함하는 것을 비롯하여 높은 유사성을 나타내었으므로 RgHsp70이 Hsp70 family임을 확인할 수 있었다 RgHsp70 mRNA는 간과 두신 조직에서 높은 발현을 보였으며, 48시간 동안 수온별(21, 18, 15 및 $12^{\circ}C$) 노출 후 간 조직에서 대조구인 $21^{\circ}C$보다 $12^{\circ}C$에서 발현이 증가함을 확인하였다. 본 연구에서는, 수온이 하강함에 따라 RgHsp70 mRNA 발현에 주요한 영향을 미치는 것으로 보아, 수온변화에 따른 스트레스로 인해 발현의 변화를 나타내는 주요 스트레스성 단백질임을 확인할 수 있었다.

HPLC를 이용한 인삼, 홍삼, 산양산삼 및 홍산삼의 성분 비교 분석 (Component Analysis of Cultivated Ginseng, Red Ginseng, Cultivated Wild Ginseng, and Red Wild Ginseng Using HPLC Method)

  • 이장호;권기록;차배천
    • 대한약침학회지
    • /
    • 제11권2호
    • /
    • pp.87-95
    • /
    • 2008
  • Objectives The aim of this experiment is to provide an differentiation of ginseng, red ginseng, cultivated wild ginseng(CWG), and red wild ginseng(RWG) through component analysis using HPLC(High Performance Liquid Chromatography, hereafter HPLC). Methods Comparative analyses of ginsenoside $Rg_3$, ginsenoside $Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ of various ginsengs were conducted using HPLC. Results 1. CWG was relatively heat-resistant and showed slow change in color during the process of steaming and drying, compared to cultivated ginseng. 2. Ginsenoside $Rg_3$ was not detected in cultivated ginseng and CWG, whereas it was high in red ginseng and RWG. Ginsenoside $Rg_3$ was more generated in red ginseng than in RWG. 3. Ginsenoside $Rh_2$ appreared during steaming and drying of cultivated ginseng, whereas it was more increased during steaming and drying of CWG. 4. Ginsenoside $Rg_1$ content was more increased during steaming and drying of cultivated ginseng, whereas it was more decreased during steaming and drying of CWG. 5. Ginsenoside $Rb_1$ content was increased about 500% during steaming and drying of cultivated ginseng, whereas it was increased about 30% during steaming and drying of CWG, indicating that ginsenoside $Rb_1$ was more generated in red ginseng than in RWG. 6. Ginsenoside $Rg_3$ content was higher, whereas ginsenoside $Rg_1$ content was lower in 11th RWG than in 9th RWG, indicating that ginsenoside $Rg_3$ content was increased and $Rg_1$ content was decreased as steaming and drying continued to proceed. Ginsenoside $Rh_2$ and $Rb_1$ contents began to be increased, followed by decreased after 9th steaming and drying process. Conclusions Above experiment data can be an important indicator for the dentification of ginseng, red ginseng, CWG, and RWG. And the following studies will be need for making good product using CWG.

Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers

  • Kim, Dal-Sik;Kim, Yunjeong;Jeon, Ji-Young;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.375-381
    • /
    • 2016
  • Background: We evaluated the drug interaction profile of Red Ginseng (RG) with respect to the activities of major cytochrome P450 (CYP) enzymes and the drug transporter P-glycoprotein (P-gp) in healthy Korean volunteers. Methods: This article describes an open-label, crossover study. CYP probe cocktail drugs, caffeine, losartan, dextromethorphan, omeprazole, midazolam, and fexofenadine were administered before and after RG supplementation for 2 wk. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data using analysis of variance after RG administration versus before RG administration. Results: Fourteen healthy male participants were evaluated, none of whom were genetically defined as poor CYP2C9, 2C19, and CYP2D6 metabolizers based on genotyping. Before and after RG administration, the geometric least-square mean metabolic ratio (90% CI) was 0.870 (0.805-0.940) for caffeine to paraxanthine (CYP1A2), 0.871 (0.800-0.947) for losartan (CYP2C9) to EXP3174, 1.027 (0.938-1.123) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.373 (0.864-2.180) for dextromethorphan to dextrorphan (CYP2D6), and 0.824 (0.658-1.032) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time ($AUC_{last}$) for fexofenadine (P-gp) was 0.963 (0.845-1.098). Administration of concentrated RG for 2 wk weakly inhibited CYP2C9 and CYP3A4 and weakly induced CYP2D6. However, no clinically significant drug interactions were observed between RG and CYP and P-gp probe substrates. Conclusion: RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.