• Title/Summary/Keyword: RF-type

Search Result 841, Processing Time 0.028 seconds

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.

Numerical Analysis of Bragg Reflector Type Film Bulk Acoustic Wave Resonator (수치적 계산을 이용한 Bragg Reflector형 탄성파 공진기의 특성 분석)

  • 김주형;이시형;안진호;주병권;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.980-986
    • /
    • 2001
  • Bragg reflector type FBAR was fabricated on the Si(100) substrate. We measured a frequency response of the resonator at 5.2 GHz and analyzed it by numerical calculation considering actual acoustic losses of each layer in the structure. We fabricated nine layer Bragg reflector of W-SiO$_2$pairs using r.f. sputtering method and fabricated AlN piezoelectric and Al electrodes using pulsed dc sputtering. The return loss(S$_{11}$) of the fabricated Bragg reflector type FBAR was 12 dB at 5.38 GHz and the series resonance frequency(f$_{s}$) was 5.376 GHz and the parallel resonance frequency(f$_{p}$) was 5.3865 GHz. Effective electro-mechanical coupling constant (K$_{eff{^2}}$) and Quality factors(Q$_{s}$), the Figures of Merit of the resonator, were about 0.48% and 411, respectively. We extracted acoustic parameters of AlN piezoelectric and reflection coefficient of the Bragg reflector by numerical calculation. We could know that material acoustic impedance and wave velocity of AlN piezoelectric decreased for intrinsic value and the electromechanical coupling constant(K$_2$) value was very low owing to the poor quality of the AlN piezoelectric. Reflection coefficient of Bragg reflector was 0.99966 and reflection band was very wide from 2.5 to 9.5 GHz.

  • PDF

A Study on Performance Improvement of ConTracer Using Taguchi Method (다구찌법을 이용한 컨테이너화물 안전수송장치 ConTracer의 성능향상에 관한 연구)

  • Choi, Hyung-Rim;Kim, Jae-Joong;Kang, Moo-Hong;Shon, Jung-Rock;Shin, Joong-Jo;Lee, Ho-In;Kim, Gwang-Pil;Kim, Chae-Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.2
    • /
    • pp.23-31
    • /
    • 2009
  • Since 9.11 terrorist attacks against the USA, the new paradigm for "supply chain security" has been established. And at the same time a lot of researches are being made on supply chain security by many foreign companies or research institutes. However, domestically the terms "supply chain security" themselves are not yet familiar, and the paradigm of security are not being used in the logistics, while little researches are being made on them But recently along with development of "ConTracer," a supply chain security technology, which is to be used as the equipment for container cargo transportation safety based on RF1D technology, related researches have begun to be activated. The key issues for the development of equipment for container transportation safety are to obtain both a high recognition rate and enough recognition distance. To this end, this study has tested the ConTracer (433 MHz type and 2.4 GHz type) by using Taguchi Method. According to our test results, in the case of 433 MHz type, it is a little more effective that the reader faces to the front-right side, and in the case of 2.4 GHz, reader direction does not make difference in the view of sensitivity. The test also has proved that it is better that antenna location, as expected, is to be installed on the outside for both types alike.

Effect of RTA Treatment on $LiNbO_3$ MFS Memory Capacitors

  • Park, Seok-Won;Park, Yu-Shin;Lim, Dong-Gun;Moon, Sang-Il;Kim, Sung-Hoon;Jang, Bum-Sik;Junsin Yi
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.138-142
    • /
    • 2000
  • Thin film $LiNbO_3$MFS (metal-ferroelectric-semiconductor) capacitor showed improved characteristics such as low interface trap density, low interaction with Si substrate, and large remanent polarization. This paper reports ferroelectric $LiNbO_3$thin films grown directly on p-type Si (100) substrates by 13.56 MHz RF magnetron sputtering system for FRAM (ferroelectric random access memory) applications. RTA (rapid thermal anneal) treatment was performed for as-deposited films in an oxygen atmosphere at $600^{\circ}C$ for 60sec. We learned from X-ray diffraction that the RTA treated films were changed from amorphous to poly-crystalline $LiNbO_3$which exhibited (012), (015), (022), and (023) plane. Low temperature film growth and post RTA treatments improved the leakage current of $LiNbO_3$films while keeping other properties almost as same as high substrate temperature grown samples. The leakage current density of $LiNbO_3$films decreased from $10^{-5}$ to $10^{-7}$A/$\textrm{cm}^2$ after RTA treatment. Breakdown electric field of the films exhibited higher than 500 kV/cm. C-V curves showed the clockwise hysteresis which represents ferroelectric switching characteristics. Calculated dielectric constant of thin film $LiNbO_3$illustrated as high as 27.9. From ferroelectric measurement, the remanent polarization and coercive field were achieved as 1.37 $\muC/\textrm{cm}^2$ and 170 kV/cm, respectively.

  • PDF

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

InGaAs-based Tunneling Field-effect Transistor with Stacked Dual-metal Gate with PNPN Structure for High Performance

  • Kwon, Ra Hee;Lee, Sang Hyuk;Yoon, Young Jun;Seo, Jae Hwa;Jang, Young In;Cho, Min Su;Kim, Bo Gyeong;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.230-238
    • /
    • 2017
  • We have proposed an InGaAs-based gate-all-around (GAA) tunneling field-effect transistor (TFET) with a stacked dual-metal gate (DMG). The electrical performances of the proposed TFET are evaluated through technology computer-aided design (TCAD) simulations. The simulation results show that the proposed TFET demonstrates improved DC performances including high on-state current ($I_{on}$) and steep subthreshold swing (S), in comparison with a single-metal gate (SMG) TFET with higher gate metal workfunction, as it has a thinner source-channel tunneling barrier width by low workfunction of source-side channel gate. The effects of the gate workfunction on $I_{on}$, the off-state current ($I_{off}$), and S in the DMG-TFETs are examined. The DMG-TFETs with PNPN structure demonstrate outstanding DC performances and RF characteristics with a higher n-type doping concentration in the $In_{0.8}Ga_{0.2}As$ source-side channel region.

Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors

  • Kim, Sung Yoon;Seo, Jae Hwa;Yoon, Young Jun;Yoo, Gwan Min;Kim, Young Jae;Eun, Hye Rim;Kang, Hye Su;Kim, Jungjoon;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2014
  • We design and analyze the n-channel junctionless fin-shaped field-effect transistor (JL FinFET) with 10-nm gate length and compare its performances with those of the conventional bulk-type fin-shaped FET (conventional bulk FinFET). A three-dimensional (3-D) device simulations were performed to optimize the device design parameters including the width ($W_{fin}$) and height ($H_{fin}$) of the fin as well as the channel doping concentration ($N_{ch}$). Based on the design optimization, the two devices were compared in terms of direct-current (DC) and radio-frequency (RF) characteristics. The results reveal that the JL FinFET has better subthreshold swing, and more effectively suppresses short-channel effects (SCEs) than the conventional bulk FinFET.

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

High Mobility Thin-Film Transistors using amorphous IGZO-SnO2 Stacked Channel Layers

  • Lee, Gi-Yong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.258-258
    • /
    • 2016
  • 최근 디스플레이 산업의 발전에 따라 고성능 디스플레이가 요구되며, 디스플레이의 백플레인 (backplane) TFT (thin film transistor) 구동속도를 증가시키기 위한 연구가 활발히 진행되고 있다. 트랜지스터의 구동속도를 증가시키기 위해 높은 이동도는 중요한 요소 중 하나이다. 그러나, 기존 백플레인 TFT에 주로 사용된 amorphous silicon (a-Si)은 대면적화가 용이하며 가격이 저렴하지만, 이동도가 낮다는 (< $1cm2/V{\cdot}s$) 단점이 있다. 따라서 전기적 특성이 우수한 산화물 반도체가 기존의 a-Si의 대체 물질로써 각광받고 있다. 산화물 반도체는 비정질 상태임에도 불구하고 a-Si에 비해 이동도 (> $10cm2/V{\cdot}s$)가 높고, 가시광 영역에서 투명하며 저온에서 공정이 가능하다는 장점이 있다. 하지만, 차세대 디스플레이 백플레인에서는 더 높은 이동도 (> $30cm2/V{\cdot}s$)를 가지는 TFT가 요구된다. 따라서, 본 연구에서는 차세대 디스플레이에서 요구되는 높은 이동도를 갖는 TFT를 제작하기 위하여, amorphous In-Ga-Zn-O (a-IGZO) 채널하부에 화학적으로 안정하고 전도성이 뛰어난 SnO2 채널을 얇게 형성하여 TFT를 제작하였다. 표준 RCA 세정을 통하여 p-type Si 기판을 세정한 후, 열산화 공정을 거쳐서 두께 100 nm의 SiO2 게이트 절연막을 형성하였다. 본 연구에서 제안된 적층된 채널을 형성하기 위하여 5 nm 두계의 SnO2 층을 RF 스퍼터를 이용하여 증착하였으며, 순차적으로 a-IGZO 층을 65 nm의 두께로 증착하였다. 그 후, 소스/드레인 영역은 e-beam evaporator를 이용하여 Ti와 Al을 각각 5 nm와 120 nm의 두께로 증착하였다. 후속 열처리는 퍼니스로 N2 분위기에서 $600^{\circ}C$의 온도로 30 분 동안 실시하였다. 제작된 소자에 대하여 TFT의 전달 및 출력 특성을 비교한 결과, SnO2 층을 형성한 TFT에서 더 뛰어난 전달 및 출력 특성을 나타내었으며 이동도는 $8.7cm2/V{\cdot}s$에서 $70cm2/V{\cdot}s$로 크게 향상되는 것을 확인하였다. 결과적으로, 채널층 하부에 SnO2 층을 형성하는 방법은 추후 높은 이동도를 요구하는 디스플레이 백플레인 TFT 제작에 적용이 가능할 것으로 기대된다.

  • PDF