• Title/Summary/Keyword: RF-plasma

Search Result 1,086, Processing Time 0.033 seconds

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Synthesis of High Purity Aluminum Nitride Nanopowder in Ammonia and Nitrogen Atmosphere by RF Induction Thermal Plasma (RF 유도결합 열 플라즈마를 이용한 암모니아와 질소분위기에서 고순도 AlN 나노 분말의 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.201-207
    • /
    • 2014
  • High-purity aluminum nitride nanopowders were synthesized using an RF induction thermal plasma instrument. Ammonia and nitrogen gases were used as sheath gas to control the reactor atmosphere. Synthesized AlN nanopowders were characterized by XRD, SEM, TEM, EDS, BET, FTIR, and N-O analyses. It was possible to synthesize high-purity AlN nanoparticles through control of the ammonia gas flow rate. However, additional process parameters such as plasma power and reactor pressure had to be controlled for the production of high-purity AlN nanopowders using nitrogen gas.

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.

RF Magnetron Sputter로 증착 한 HfN 박막의 Plasma Power 변화에 따른 Nano-electroribology 특성 변화 연구

  • Park, Myeong-Jun;Kim, Seong-Jun;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.354.2-354.2
    • /
    • 2014
  • 최근 반도체 산업의 발전에 따라 반도체 소자 내 배선재료로 사용되던 Aluminium (Al)의 대체물로 Copper (Cu)가 사용되고 있다. Cu는 Al보다 우수한 전도성과 비용이 저렴하다는 장점이 있으나 반도체 기판과의 확산으로 이를 해결해야만 하는 문제점이 있다. 이는 Si와 Cu사이에 확산방지막을 사용하여 해결할 수 있는데 Hafnium Nitride (HfN) 박막은 다른 물질과 비교해 고온에서의 안정성과 낮은 비저항을 가지고 있어 주목을 받고 있다. 본 연구에서는 rf magnetron sputter 방법으로 박막 증착 시에 인가하는 rf power가 박막의 표면 특성에 어떠한 영향을 미치는지 nano-indenter를 사용해 surface hardness와 elastic modulus의 변화를 중심으로 알아보았다. 시료는 rf magnetron sputter로 증착 시 인가하는 plasma power를 60W와 80W로 달리하여 증착하였다. 증착가스는 Ar과 $N_2$를 조절하여 사용하였고 총 유량을 40 sccm 으로 고정하였으며, 이 때 압력은 3mTorr로 유지하였다. 실험결과 plasma power를 80W로 인가하여 증착한 시료의 surface hardness (18.48 GPa)가 60W로 증착한 시료의 surface hardness (12.03 GPa)보다 큰 값을 나타내었다. 이와 마찬가지로 80W로 증착한 시료의 elastic modulus(187.16 GPa)도 60W로 증착한 시료의 탄성계수 (141.15 GPa)보다 큰 값을 나타내었다. 이는 증착 시 인가하는 plasma power의 크기가 증가하면 박막표면에 compressive stress가 생성되어 박막의 surface hardness와 elastic modulus가 상대적으로 높게 측정되는 것으로 생각된다.

  • PDF

The Effect of Uni-nanoadditive Manufactured Using RF Plasma Processing on Core-shell Structure in MLCC

  • Song, Soon-Mo;Kim, Hyo-Sub;Park, Kum-Jin;Sohn, Sung-Bum;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.131-136
    • /
    • 2009
  • Radio frequency (RF) plasma treatment is studied for the size reduction and the spheroidization of coarse particles to change them into nano-sized powders of spherical shape in MLCC fields. The uni-nanoadditives manufactured by RF plasma processing for high dispersion have been investigated for the effect on core-shell structure in dielectrics of MLCC. Microstructures have been characterized using scanning electron microscope (SEM), transmission electron microscope (TEM) and Electron Probe Micro Analyzer (EPMA). We compared the distribution of core-shell grains between specimens manufactured using uni-nanoadditive and using mixed additive. In addition, the uniformity of rare earth elements in the core-shell structured grains was analyzed. It was shown, from TEM observations, that the sintered specimen manufactured using uni-nanoadditives had more dense small grains with well-developed core-shell structure than the specimen using mixed additives, which had a homogeneous microstructure without abnormal grain growth and shows broad temperature coefficient of capacitance (TCC) curves in all temperature ranges because of well dispersed additives.

A Study on the Enhancement of Emission Efficiency of an Organic EL Devices Using the RF Plasma (RF 플라즈마를 이용한 유기 EL소자의 발광 효율에 관한 연구)

  • 박상무;김형권;신백균;임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.400-406
    • /
    • 2003
  • Efficient electrodes are devised for organic luminescent device(OLED). ITO electrode is treated with $O_2$ plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. In the case of device inserted the buffer layer by using the plasma polymerization after $O_2$ plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic are made in the emitting layer. Therefore it realized the device capability of two times in the aspect of luminous efficiency than the device which do not be inserted the buffer layer. Experiments are limited to the device that has the structure of TPD/$AIq_3$, however, the aforementioned electrodes can similarly applied to the organic luminous device and the Polymer luminous device.

Characterization of Diamond-like Carbon Films Prepared by Magnetron Plasma Chemical Vapor Deposition

  • Soung Young Kim;Jai Sung Lee;Jin Seok Park
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Thin films of diamond-like carbon(DLC) can be successfully deposited by using a magnetron plasma chemical vapor deposition (CVD) method with an rf(13.56 MHz) plasma of $C_dH_8$. Plasma characteristics are analyzed as a function of the magnetic field. As the magnetic field increases, both electron temperature ($T_e$) and density ($n_e$)increase, but the negative dc self-bias voltage (-$V_{ab}$) decreases, irrespective of gas pressures in the range of 1~7 mTorr. High deposition rates have been obtained even at low gas pressures, which may be attributed to the increased mean free path of electrons in the magentron plasma. Effects of rf power and additive gas on the structural properties of DLC films aer also examined by using various technique namely, TED(transmissio electron diffraction) microanalysis, FTIR, and Raman spectroscopies.

  • PDF

A Operation characteristics of the HB inverter for Remote Plasma Source (리모트 프라즈마 전원용 하프 브리지 인버터의 운전 특성)

  • Kim S.S.;Won C.Y.;Choi D.K.;Choi S.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.611-615
    • /
    • 2003
  • In this paper, a operation characteristics and analysis of the HB(half bridge) inverter for remote plasma system are studied. the remote plasma system is cleaning system for the chemical vapor deposition (CVD) chamber in semiconductor processing. The remote plasma system is powered by the RF generator The main power stage of the RF generator is used for the HB PWM inverter with an low pass filter in the secondary circuit of the transformer. The detailed mode analysis of HB invertor was described. The operation characteristics of Remote Plasma Source are verified by simulation and experimental results.

  • PDF

Simulation of a Dually Excited Capacitively Coupled RF Plasma

  • Kim, Heon-Chang;Sul, Yong-Tae;Park, Sung-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.513-514
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combination of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self-dc bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

A Study on the Electrode formation of an Organic EL Devices using the RF Plasma (RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구)

  • 이은학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.