• Title/Summary/Keyword: RF-DC converter

Search Result 55, Processing Time 0.02 seconds

A Design of High Efficiency Microwave Wireless Power Acceptor IC (고효율 마이크로파 무선 전력 수신 집적회로 설계 및 구현)

  • Jung, Won-Jae;Jung, Hyo-Bin;Kim, Sang-Kyu;Jang, Jong-Eun;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1125-1131
    • /
    • 2013
  • Wireless power transmission technology has been studied variety. Recently, wireless power transmission technology used by resonance and magnetic induction field is applied to various fields. However, magnetic resonance and inductive coupling are have drawbacks - power transmission distance is short. Microwave transmission and accept techniques have been developed to overcome short distance. However, improvement in efficiency is required. This paper, propose a high-efficiency microwave energy acceptor IC(EAIC). Suggested EAIC is consists of RF-DC converter and DC-DC converter. Wide Input power range is -15 dBm ~ 20 dBm. And output voltage is boosted up to 5.5 V by voltage boost-up circuit. EAIC can keep the output voltage constant. Available efficiency of RF-DC converter is 95.5 % at 4 dBm input. And DC-DC efficiency is 94.79 % at 1.1 mA load current. Fully EAIC efficiency is 90.5 %.

Design and Implementation of Frequency Down Converter for Satellite Communication (위성 통신용 주파수 하향 변환기의 설계 및 제작)

  • Lee, Seung-Dae;Na, Sang-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.801-807
    • /
    • 2012
  • In this paper, design and implementation of frequency down converter based on LC filter technic. Single frequency down converter, designed a low-noise amplifier, mixer, IF amplifier, LC filter was configured. And it is composed of DC block capacitors and RF bypass capacitor. LC filter, replace it with the IC reduced the power and realized low cost. The gain of single down converter is about 10dBm and realized by 18MHz bandwidth at 70MHz band.

Measurement of Supercapacitor Charging Characteristic for RF Wireless Charging (RF무선충전을 위한 슈퍼커패시터 충전특성 측정)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.136-139
    • /
    • 2021
  • In this paper, we studied the charging characteristics of high-capacity supercapacitor with high current for RF wireless charging system for smart phone charging. The dc output of the RF-DC receiver is connected to supercapacitor after which is connected to DC-DC converter for charging a smart phone. This configuration stably supplies voltage and current for charging it. Studies show that the higher charging current use, the rapidly shorter the charging time of supercapacitor is. The currents of 2A, 10A and 27A were used for charging supercapacitors. The charging time was measured for 3000F, 6000F, 12000F supercapacitors which is parallelly connected with 3000F supercapacitors.

Design and Implementation of Double Down-Converter for Satellite TV (위성 TV용 이중 하향 변환기의 설계 및 제작)

  • Lee, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.840-845
    • /
    • 2013
  • In this paper, the broadband frequency double down-converter based on LC filter technologies has been designed and implemented, and its performances are introduced. The Designed frequency double down-converter is consisted with a low-noise amplifier, mixer, IF amplifier, LC filter, DC-block capacitor and RF-bypass capacitor. Especially, instead of active devices of a typical converter, the suggested converter designed using passive devices to provide both low-power consumption and low-cost model. As results of the measurement, the implemented frequency double down-converter realizes the broadband performance with the bandwidth of 100MHz (13~113MHz) at the center frequency of 63MHz, and its gain is approximately 40dB.

Study on The Technical Improvement in Wireless Power Communication System with Low Power (무선전력통신 시스템의 저전력화를 위한 기술적 개선방안)

  • Chung, Sung-In;Lee, Seung-Min;Lee, Hyo-Sung;Lee, Hug-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • This study proposes the algorithm which drives the powerless without battery. The exiting wire or RF type dosimeter, which is the computation of the real time with battery on the dose radiation exposure, In the Wired dosimeter, it is trouble to need the maintenance and management by periods. Besides, the case of the RF typed dosimeter with battery, it is requested to size bigger and to replace battery frequently and so on. Especially RF typed dosimeter has trouble to need for the embody with large power consumption on the contactless typed dosimeter. As the method for the low power, the study designed to be down the operating clock of the MPC, to improve the efficiency of the rectifier, to eliminate the external memory and the DC-DC converter for the simplification of the circuit We convince our research contributes not only to understand the simplified circuit and miniaturization, but also to help the design and application technology of the powerless dosimeter.

The EMI Noise Reduction Circuit with Random Number Generator (랜덤 수 생성 회로를 이용한 EMI Noise 저감 회로)

  • Kim, Sung Jin;Park, Ju Hyun;Kim, SangYun;Koo, Ja Hyun;Kim, Hyung il;Lee, Kang-Yoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.798-805
    • /
    • 2015
  • This paper proposes Relaxation Oscillator with Random Number Generator to minimize electromagnetic interference (EMI) noise. DC-DC Converter with Relaxation Oscillator is presented how much spurious noise effects to RF Receiver system. The main frequency of the proposed Relaxation oscillator is 7.9 MHz to operate it and add temperature compensation block to be applied to the frequency compensation in response to temperature changes. The DC-DC Converter Spurious noise is reduced up to 20 dB through changing frequency randomly. It is fabricated in $0.18{\mu}m$ CMOS technology. The active area occupies an area of $220{\mu}m{\times}280{\mu}m$. The supply voltage is 1.8 V and current consumption is $500{\mu}A$.

Smart Phone RF Wireless Charging with 5.8-GHz Microwave Wireless Power Receiver (5.8-GHz무선전력수신기를 이용한 스마트폰 RF 무선충전)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.25-28
    • /
    • 2021
  • In this paper, we studied smart phone RF wireless charging with 5.8-GHz microwave wireless power receiver. The dc output of the receiver connected to super capacitor and DC-DC converter for charging a smart phone. This configuration stably supplies 5V and current for charging it. Studies show that the more receivers are used at close range, the higher the received voltage values and the larger the capacity of the super capacitor, the longer the charging time. The present 5.8-GHz 1W wireless power transmission system is not enough for charging a smartphone mainly due to the lack of current of the receiver.

Design and Fabrication of 1.2GHz range RF Transmitter and Receiver for Bi-directional Capsule Endoscopes (양방향 캡슐형 내시경용 1.2GHz 대역 RF 송수신기 설계 및 제작)

  • 장경만;문연관;류원열;윤영섭;조진호;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.81-85
    • /
    • 2003
  • The Bi-directional Wireless Capsule endoscope con sists of CMOS Image sensor, FPGA, LED, Battery, DC to DC Converter, Transmitter, Receiver and Antennas. The RF transmitter at 1.2GHz range is designed and fabricated with 10 mm(diameter)x1.6 mm(thickness) dimension considering the maximum permission exposure(MPE), system size, power consumption, linearity and modulation method. The fabricated RF receiver at 400MHz range can demodulate the external signals so as to control the behavior of CMOS image sensor. four LEDs and Transmitter.

  • PDF

Design of DVB-T/H SiP using IC-embedded PCB Process (IC-임베디드 PCB 공정을 사용한 DVB-T/H SiP 설계)

  • Lee, Tae-Heon;Lee, Jang-Hoon;Yoon, Young-Min;Choi, Seog-Moon;Kim, Chang-Gyun;Song, In-Chae;Kim, Boo-Gyoun;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.9
    • /
    • pp.14-23
    • /
    • 2010
  • This paper reports the fabrication of a DVB-T/H System in Package (SiP) that is able to receive and process the DVB-T/H signal. The DVB-T/H is the European telecommunication standard for Digital Video Broadcasting (DVB). An IC-embedded Printed Circuit Board (PCB) process, interpose a chip between PCB layers, has applied to the DVB-T/H SiP. The chip inserted in DVB-T/H SiP is the System on Chip (SoC) for mobile TV. It is comprised of a RF block for DVB-T/H RF signal and a digital block to convert received signal to digital signal for an application processor. To operate the DVB-T/H IC, a 3MHz DC-DC converter and LDO are on the DVB-T/H SiP. And a 38.4MHz crystal is used as a clock source. The fabricated DVB-T/H SiP form 4 layers which size is $8mm{\times}8mm$. The DVB-T/H IC is located between 2nd and 3rd layer. According to the result of simulation, the RF signal sensitivity is improved since the layout modification of the ground plane and via. And we confirmed the adjustment of LC value on power transmission is necessary to turn down the noise level in a SiP. Although the size of a DVB-T/H SiP is decreased over 70% than reference module, the power consumption and efficiency is on a par with reference module. The average power consumption is 297mW and the efficiency is 87%. But, the RF signal sensitivity is declined by average 3.8dB. This is caused by the decrease of the RF signal sensitivity which is 2.8dB, because of the noise from the DC-DC converter.