• Title/Summary/Keyword: RF impedance

Search Result 275, Processing Time 0.032 seconds

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.

Numerical Analysis of Bragg Reflector Type Film Bulk Acoustic Wave Resonator (수치적 계산을 이용한 Bragg Reflector형 탄성파 공진기의 특성 분석)

  • 김주형;이시형;안진호;주병권;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.980-986
    • /
    • 2001
  • Bragg reflector type FBAR was fabricated on the Si(100) substrate. We measured a frequency response of the resonator at 5.2 GHz and analyzed it by numerical calculation considering actual acoustic losses of each layer in the structure. We fabricated nine layer Bragg reflector of W-SiO$_2$pairs using r.f. sputtering method and fabricated AlN piezoelectric and Al electrodes using pulsed dc sputtering. The return loss(S$_{11}$) of the fabricated Bragg reflector type FBAR was 12 dB at 5.38 GHz and the series resonance frequency(f$_{s}$) was 5.376 GHz and the parallel resonance frequency(f$_{p}$) was 5.3865 GHz. Effective electro-mechanical coupling constant (K$_{eff{^2}}$) and Quality factors(Q$_{s}$), the Figures of Merit of the resonator, were about 0.48% and 411, respectively. We extracted acoustic parameters of AlN piezoelectric and reflection coefficient of the Bragg reflector by numerical calculation. We could know that material acoustic impedance and wave velocity of AlN piezoelectric decreased for intrinsic value and the electromechanical coupling constant(K$_2$) value was very low owing to the poor quality of the AlN piezoelectric. Reflection coefficient of Bragg reflector was 0.99966 and reflection band was very wide from 2.5 to 9.5 GHz.

  • PDF

Characterization of Schottky Diodes and Design of Voltage Multiplier for UHF-band Passive RFID Transponder (UHF 대역 수동형 RFID 태그 쇼트키 다이오드 특성 분석 및 전압체배기 설계)

  • Lee, Jong-Wook;Tran, Nham
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.9-15
    • /
    • 2007
  • In this paper, we present the design of Schottky diodes and voltage multiplier for UHF-band passive RFID applications. The Schottky diodes were fabricated using Titanium (Ti/Al/Ta/Al)-Silicon (n-type) junction in $0.35\;{\mu}m$ CMOS process. The Schottky diode having $4{\times}10{\times}10\;{\mu}m^{2}$ contact area showed a turn-on voltage of about 150 mV for the forward diode current of $20\;{\mu}A$. The breakdown voltage is about -9 V, which provides sufficient peak inverse voltage necessary for the voltage multiplier in the RFID tag chip. The effect of the size of Schottky diode on the turn-on voltage and the input impedance at 900 MHz was investigated using small-signal equivalent model. Also, the effect or qualify factor of the diode on the input voltage to the tag chip is examined, which indicates that high qualify factor Schottky diode is desirable to minimize loss. The fabricated voltage multiplier resulted in a output voltage of more than 1.3 V for the input RF signal of 200mV, which is suitable for long-range RFID applications.

A Miniaturized and Band Rejection Characteristic of Bow-Tie Monopole UWB Antenna (보우-타이 모노폴 UWB 안테나의 소형화 및 대역 저지 특성)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.300-305
    • /
    • 2012
  • In this paper, a miniaturized bow-tie monopole UWB antenna with band rejection characteristic is proposed. To miniaturize the proposed antenna, a perfect magnetic wall(PMW) condition is applied to primitive bow-tie monopole antenna. An uneven ground patch, a tapered feeding structure and a edge-chopped main patch are adapted for impedance matching. A quater-lambda slot resonator is inserted at main patch to prevent interference in UWB band from another band. The proposed antenna is fabricated on Taconic RF60-A substrate with relative permittivity of 6.15. The size of the proposed antenna is $30.0{\times}39.7mm^2$, which is only 45 % of the conventional bow-tie monopole antenna. The proposed antenna covers full UWB band with return losses less than -10 dB and has band stop characteristic in 5 GHz WLAN band. The maximum gains are within -1.0~5.0 dBi, the group delay variations are within 1.0 ns and the radiation patterns show directivity characteristics in x-y plane.

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

A Dual frequency Monopole Antenna using CPW Feed Line (코프래너 급전 이중 주파수 모노폴 안테나)

  • Kim, Joon-Il;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.47-54
    • /
    • 2005
  • The design method for a dual frequency antenna using CPW feed lines is presented. The antenna structures can be simplified by CPW feed lines and easily designed on integrated circuits. The presented antenna has two resonant frequency ranges and each respective resonant frequency is determined by its own length of monopole antenna. We used an impedance matching method by using a monopole coupling related to the ground of CPW feed lines As a result, the resonant frequencies were 5.25[GHz] and 23.5[GHz] and their bandwidths $35.2\%,\;and\;41.3\%$, respectively, and also, the separation of the two frequencies $370\;%$. We presented an analytical designing method to implement a dual frequency monopole antenna and showed simple antenna structures having two frequency ranges for RFIC Integrations.

Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

  • Lee, Honyoung;Jang, Haegyu;Lee, Hak-Seung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.142.2-142.2
    • /
    • 2015
  • Plasma etch endpoint detection (EPD) of SiO2 and PR layer is demonstrated by plasma impedance monitoring in this work. Plasma etching process is the core process for making fine pattern devices in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a simple, non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist (PR), dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0 % oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD.

  • PDF

Implementation of High-Power PM Diode Switch Modules and High-Speed Switch Driver Circuits for Wibro Base Stations (와이브로 기지국 시스템을 위한 고전력 PIN 다이오드 스위치 모듈과 고속 스위치 구동회로의 구현)

  • Kim, Dong-Wook;Kim, Kyeong-Hak;Kim, Bo-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, the design and implementation of high-power PIN diode switch modules and high-speed switch driver circuits are presented for Wibro base stations. To prevent isolation degradation due to parasitic inductances of conventional packaged PIN diodes and to improve power handling capabilities of the switch modules, bare diode chips are used and carefully placed in a PCB layout, which makes bonding wire inductances to be absorbed in the impedance of a transmission line. The switch module is designed and implemented to have a maximum performance while using a minimum number of the diodes. It shows an insertion loss of ${\sim}0.84\;dB$ and isolation of 80 dB or more at 2.35 GHz. The switch driver circuit is also fabricated and measured to have a switching speed of ${\sim}200\;nsec$. The power handling capability test demonstrates that the module operates normally even under a digitally modulated 70 W RF signal stress.

Study on the Electromagnetic Wave Propagation In the Parallel-Plate Waveguide with the Metamaterial ENZ Tunnel Embedded (Metamaterial ENZ 터널이 포함된 평행 평판 도파관 내 전자기파의 전파 특성에 관한 연구)

  • Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • This paper discusses how to change the electromagnetic waves' property in the cut-off causing discontinuity existing in the guiding structure of the RF passive component by using the metamaterial and elaborates on its principle. Particularly, we find and explain, from the viewpoint of electromagnetics and circuit theories, the so-called tunneling condition that when the segment with an extremely narrow cross-section leading to blockage in the parallel-plate waveguide is given the ENZ(Epsilon Near Zero) for its filling material, the wave starts to propagate through the segment. The analysis method as a transmission-line theory taking the discontinuity and material change into consideration is shown valid through the comparison with other methods for analyzing parallel-plate waveguides, and provides the illustration of the S-parameters and impedance describing the characteristics of the tunneling.