• Title/Summary/Keyword: RF hyperthermia

Search Result 26, Processing Time 0.021 seconds

DEVELOPMENT and THERMAL DISTRIBUTION of an RF CAPACITIVE HYPERTHERMIA SYSTEM (고주파 유전가열형 온열암치료기의 개발과 가온특성)

  • Park, Mig-Non;Lee, Sang-Bae;Park, Duk-Kyu;Chu, Sung-Sil;Jung, Mi-Hyang
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1309-1312
    • /
    • 1987
  • Hyperthermia for the treatment of cancer has been introduced for a long time and the biological effect for the use of hyperthermia to malignant tumors has been well established and encouraging clinical results has been observed. Unfortunately, the engineering or technical aspects of hyperthermia for the deep seated tumors has not been satisfactory. We have researched and developed the radiofrequency capacitive hyperthermia system (GHT- RF8). It was composed with 8-9 MHZ RF generator, capacitive electrode, matching system, cooling system, temperature measuring system and control computer. The thermal profile was investigated in agar phantom, animals and in human tumors, which was heated with capacitive RF device.

  • PDF

Thermal Distribution and Development of RF Hyperthermia for Cancer Treatment (암치료를 위한 고주파 온열장치의 개발과 가온특성)

  • 추성실;김귀언
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1987
  • The biological effects for the use of hypertherinla to treat malignant tumors has been well studied and encouraging clinical results have been reported. However, the engineering and technical aspects of hyperthermia for the deepseated tumors has not been satisfactory. We have developed the FF capacitive hyperthermia device(GHT RF8)by cooporation with Yonsei Cancer Center and Green Cross Medical Equipment Corporation. It was composed with 8.10 MHz RF generator, capacitive electrode, matching system, cooling system, temperature measuring thermocouples and control PC computer. We have measured the temperature and thermal distribution in agar phantom, animals and human tumors.

  • PDF

Design and implementation of RF hyperthermia system for deep-seated cancer therapy. (심재성 암치료를 위한 RF hyperthermia system의 설계 및 제작)

  • Yoo, Jae-Hyoung;Park, Mi-Gnon
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.9-12
    • /
    • 1985
  • This paper covers the design and implementation process of RF hypertermia system for cancer therapy. Among many hyperthermic methods, RF capacitive heating method is discussed because it can heat the deep-seated tumors selectively. The RF power oscillator and its applicators were designed and implemented. And the experiments were performed with agar phantom and dog to prove that the system can heat any depth selectively. And the electrical safety and appropriateness of clinical application was proved through the human living-body test.

  • PDF

A Study on the RF and Microwave Hyperthermia System for Cancer Therapy (온열료법을 이용한 고주파 및 마이크로웨이브 암치료기에 관한 연구)

  • 유재병;박덕규;양성화;박민용;추성실;이상배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.486-492
    • /
    • 1987
  • This study is an attempt to review the theories about the RF and microwave hyperthermia and to get the practical implementation of hyperthermia system on the basic clinical experiments with agar phantoms and four patients. The frequencies of RF power are 8 MHz and 16 MHz, which are effective for the heating of deep-seated and superficial tumors, and microwave is 2.45 GHz, also suitable for the heating of superficial tumors. Even if the long-term effect of clinical applications were not investigated for human living body, it was observee that the RF and microwave hyperthermias are effective for many kinds of cancers in the fixed frequency ranges.

  • PDF

Improvement of Heating Pattern in RF Hyperthermia -Simultaneous Application of Dielectric Heating and Induction Heating-

  • Sakakibara, Norifumi;Ochiai, Makoto;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.478-480
    • /
    • 2002
  • Heating by RF wave is divided into dielectric heating and induction heating. Dielectric heating and induction heating from outside the body have the compensatory heating pattern. While surface fat layer is heated by dielectric heating, it is not heated by induction heating. While the peripheral part at the middle of the electrodes is not heated by dielectric heating, it is heated by induction heating. By the simultaneous application both modalities, heating pattern seems to be more uniform and improved. Computer simulation of Finite Element Method (FEM) using ANSYS was conducted to dielectric heating with the results of above-mentioned feature. Theoretical considerations by the uniform RF magnetic field in a cylinder and textbooks support the feature of the above-mentioned heating pattern of induction heating. Further computer simulation of FEM using ANSYS will be conducted to simultaneous application of dielectric heating and induction heating to verify and will be reported.

  • PDF

Feasibility Study on Magnetic Nanoparticle Hyperthermia in Low Field MRI (저자장 자기공명영상 시스템 내에서 초상자성 나노입자 온열치료를 위한 발열 평가)

  • Kim, Ki Soo;Cho, Min Hyoung;Lee, Soo Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • For the combination of MRI and magnetic particle hyperthermia(MPH), we investigated the relative heating efficiency with respect to the strength of the static magnetic field under which the magnetic nanoparticles are to be heated by RF magnetic field. We performed nanoparticle heating experiments at the fringe field of 3T MRI magnet with applying the RF magnetic field perpendicularly to the static magnetic field. The static field strengths were 0T, 0.1T, 0.2T, and 0.3T. To prevent the coil heat from conducting to the nanoparticle suspension, we cooled the heating solenoid coil with temperature-controlled water with applying heat insulators between the solenoid coil and the nanoparticle container. We observed significant decrease of heat generation, up to 6% at 0.3T(100% at 0T), due to the magnetic saturation of the nanoparticles of 15 nm diameter under the static field. We think MPH is still feasible at low magnetic field lower than 0.3T if stronger RF magnetic field generation is permitted.

Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System

  • Yoon, Young Il;Kim, Kwang-Soo;Kwon, Yong-Soo;Cho, Hee-Sang;Lee, Hak Jong;Yoon, Chang-Jin;Yoon, Tae-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1806-1808
    • /
    • 2014
  • We report the successful preparation of gold nanoparticles (Au NPs) using a novel electroreduction process, which is simple, fast, and environmentally friendly (toxic chemicals such as strong reducing agents are not required). Our process allows for the mass production of Au NPs and adequate particle size control. The Au NPs prepared show high biocompatibility and are non-toxic to healthy human cells. By applying radio-frequency (RF) ablation, we monitored the electro-hyperthermia effect of the Au NPs at different RFs. The Au NPs exhibit a fast increase in temperature to $55^{\circ}C$ within 5 min during the application of an RF of 13 MHz. This temperature rise is sufficient to promote apoptosis through thermal stress. Our work suggests that the selective Au NP-mediated electro-hyperthermia therapy for tumor cells under an RF of 13 MHz has great potential as a clinical treatment for specific tumor ablation.

Fabrication of Combined Probes for Interstitial hyperthermia and Brachyradiotherapy (고 선량율 근접 및 온열치료 병용 삽입관의 제작과 특성)

  • Chu, Sung-Sil;Kim, Sung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.85-87
    • /
    • 2004
  • We fabricated flexible thermoradiotherapy probes to alternated combination with Interstitial hyperthermia and Brachyradiotherapy thermoradiotherapy probe was coated by gold plate on polyethylene brachytherapy probe. When Agar phantom was heated 15 minute with 30 W radiofrequency power, temperature increased as 5oC for polyethylene probe and 20oC for gold coated polyethylene probe. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures (90% relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature (90% relative SAR using Tm). The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50 min to generate tissue temperatures of 43${\circ}$C. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from 7${\sim}$30 days. The acute stage was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (days30)canine brain.

  • PDF

Temperature-Range-Dependent Optimization of Noninvasive MR Thermometry Methods (온도범위에 따른 비침습적 자기공명 온도측정방법의 최적화)

  • Kim, Jong-Min;Kumar, Suchit;Jo, Young-Seung;Park, Joshua Haekyun;Kim, Jeong-Hee;Lee, Chulhyun;Oh, Chang-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.241-250
    • /
    • 2015
  • Noninvasive temperature monitoring is feasible with Magnetic Resonance Imaging (MRI) based on temperature sensitive MR parameters such as $T_1$ and $T_2$ relaxation times, Proton Resonance Frequency shift (PRFs), diffusion, exchange process, magnetization transfer contrast, chemical exchange saturation transfer, etc. While the temperature monitoring is very useful to guide the thermal treatment such as RF hyperthermia or thermal ablation, the optimization of the MR thermometry method is essential because the range of temperature measurement depends on the choice of the measurement methods. Useful temperature range depends on the purpose of treatment methods, for example, $42^{\circ}C$ to $45^{\circ}C$ for RF hyperthermia and over $50^{\circ}C$ for thermal ablation. In this paper, MR thermometry methods using $T_1$ and $T_2$ relaxation times and PRFs-based MR thermometry are tried on a 3.0 T MRI system and their results are reported and compared. In addition, the scanning protocol and temperature calculation algorithms from $T_1$ and $T_2$ relaxation times and PRFs are optimized for the different temperature ranges for the purpose of RF hyperthermia and/or thermal ablation.

Development and Thermal Distribution of An RF Capacitive Heating Device (유전가열장치의 개발과 온열분포)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh, John-Kyu;Kim, Byung-Soo
    • Radiation Oncology Journal
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1987
  • Hypertermia for the treatment of cancer has been introduced for a long time and the biological effect for the use of hyperthermia to treat malignant tumors has been well established and encouraging clinical results have been obserbed. Unfortunately, however, the engineering or technical aspects of hyperthermia for the deep seated tumors has not been satisfactory. We developed the radiofrequency capactive hyperthermia device (Greenytherm-GY8) in cooperation with Yonsei Cancer Center and Green Cross Medical Corporation. It was composed with $8{\sim}10MHz$ RF generator, capacitive electrode, matching system, cooling system, temperature measuring system and control PC computer. The thermal profile was investigated in agar phantom, animals and in human tumors, heated with capactivie RF device. Deep and homogeneous heating could be achieved in a large phantom of 25cm diameter and 19cm thick when heated with a pair of 23cm diameter electrodes, coupled to both bases of the phantom, when the size of the two electrodes was not the same, the region near the smaller electrode was preferentially heated. It was, therefore, possible to control the depth of heating by choosing proper size of electrodes. Therapeutic temperature $(42^{\circ}C{\sim}43^{\circ}C)$ could be obtained in the living animal experiments. Indications are that deep heating of humn tumors might be achieved with the capacitive method, provided that subcutaenous fat layer is cooled by temperature controlled bolus and large size of electrodes.

  • PDF