• 제목/요약/키워드: RF Sputter

검색결과 397건 처리시간 0.033초

rf 마그네트런 스퍼터링법으로 Si 기판위에 증착한 ZnO 박막의 결정성과 photoluminescence 특성에 대한 Zn 완충층 두께의 영향 (Effects of ZnO Buffer Layer Thickness on the Crystallinity and Photoluminescence Properties of Rf Magnetron Sputter-deposited ZnO Thin Films)

  • 조용준;박안나;이종무
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.445-448
    • /
    • 2006
  • Highly c-axis oriented ZnO thin films were grown on Si(100)substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL) and Atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by rf magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.

전해 크롬도금 대체용으로서의 CrC 스퍼터링에 관한 연구 (A study of CrC Sputtering as an Alternative Method for Cr Electroplating)

  • 임종민;최균석;이종무
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.82-88
    • /
    • 2002
  • Chromium carbide films were deposited on high speed steels using a Cr_3C_2$ target by magnetron sputtering. Effects of the deposition parameters (power, Ar pressure and substrate temperature) on deposition rates and surface roughnesses of the films were investigated. The morphologies of those films were characterized by scanning electron microscopy and atomic force microscopy. The grain size of the samples deposited using dc-power is larger than that using equivalent rf-power. The hardness of the sample increases with increasing rf-power, whereas the elastic modulus nearly does not change with rf-power. The optimum sputter deposition conditions for chromium carbide on high speed steels in the corrosion resistance aspect were found to be the rf-power with small roughness.

반응성 RF 마그네트론 스퍼터로 증착한 AIN 박막의 물성 및 SAW소자 특성에 관한 연구 (A Study on the SAW Characteristics of the AIN Thin Film Prepared by Reactive RF Magnetron Sputtering System)

  • 고봉철;전순배;황영한;김재욱;남창우;이규철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.73-78
    • /
    • 2004
  • AIN thin film has been deposited on the $AI_2$$O_3$substrate with reactive radio frequency( RF) magnetron sputtering method. In this work, elelctromechanical coupling coefficient of AIN thin film was increased with an increase of AIN thin film thickness, and the maximum value was 0.11%. Insertion loss of SAW device was decreased with an increase of AIN thin film thickness and the minimum value was 33[㏈]. SAW velocity of IDTs/AIN/$AI_2$$O_3$structure and IDTs/AIN/$AI_2$$O_3$/Si structure were about 5480[㎧]and 5040[㎧]respectively.

RF 마그네트론 스퍼터링법으로 제조한 GZO 박막의 Ar 유량에 따른 특성 (Properties of ZnO:Ga Thin Films Deposited by RF Magnetron Sputtering with Ar Gas Flows)

  • 김덕규
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.450-453
    • /
    • 2020
  • In this study, ZnO:Ga thin films were fabricated on a glass substrate using various Ar flows by an RF magnetron sputter system at room temperature. The dependencies of Ar flow on different properties were investigated. An appropriate control over the Ar flow led to the formation of a high-quality thin film. The ZnO:Ga films were formed as a hexagonal wurtzite structure with high (002) preferential orientation. The films exhibited a typical columnar microstructure and a smooth top face. The average transmittance was 85~89% within the visible area. By decreasing the Ar flow, the sheet resistance was decreased due to an increase in the grain size and a decrease in the root mean square roughness. The lowest sheet resistance of 86 Ω/□ was obtained at room temperature for the 40 sccm Ar flow.

ZnO/나노결정다이아몬드 적층 박막 SAW 필터 (SAW Filter Made of ZnO/Nanocrystalline Diamond Thin Films)

  • 정두영;강찬형
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.216-219
    • /
    • 2009
  • A surface acoustic wave (SAW) filter structure was fabricated employing $4{\mu}m$ thick nanocrystalline diamond (NCD) and $2.2{\mu}m$ thick ZnO films on Si wafer. The NCD film was deposited in an $Ar/CH_4$ gas mixture by microwave plasma chemical vapor deposition method. The ZnO film was formed over the NCD film in an RF magnetron sputter using ZnO target and $Ar/O_2$ gas. On the top of the two layers, copper film was deposited by the RF sputter and inter digital transducer (IDT) electrode pattern (line/space : $1.5/1.5{\mu}m$) was defined by the photolithography including a lift-off etching process. The fabricated SAW filter exhibited the center frequency of 1.66 GHz and the phase velocity of 9,960 m/s, which demonstrated that a giga Hertz SAW filter can be realized by utilizing the nanocrystalline diamond thin film.