• Title/Summary/Keyword: RF Receiver

Search Result 478, Processing Time 0.026 seconds

Image Rejection Method with Circular Trajectory Characteristic of Single-Frequency Continuous-Wave Signal (단일 주파수 연속파 신호의 원형 궤도 특성을 이용한 영상 제거 방법)

  • Park, Hyung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.148-156
    • /
    • 2009
  • This paper presents a new image rejection algorithm based on the analysis of the distortion of a single-frequency continuous-wave (CW) signal due to the I/Q mismatch. Existing methods estimated the gain mismatch and phase mismatch on RF receivers and compensated them However, this paper shows that the circular trajectory of a single-frequency CW signal is distorted elliptic-type trajectory due to the I/Q mismatch. Utilizing the analysis, we propose a I/Q mismatch compensation method. It has two processing steps. In the first processing step, the generated signal is rotated to align the major axis of the elliptic-type trajectory diagram with the x-axis. In the second processing step, the Q-channel signal in the regenerated signal is scaled to align the regenerated signal with the transmitted single-frequency CW signal. Simulation results show that a receiver using the proposed image rejection algorithm can achieve an image rejection ratio of more than 70dB. And, simulation results show that the bit error rate performances of receivers using the proposed image rejection algorithm are almost the same as those of conventional coherent demodulators, even in fading channels.

Ringer's solution detector and transceiver design for efficient manage of patient (효율적인 환자관리를 위한 링거액 감지기 및 송수신기 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.45-50
    • /
    • 2016
  • This paper reports a Ringer's solution detector and transceiver design for the efficient management of patients. The ringer's solution detection and transceiver consisted of the main control part, ringer's solution detection part, display and warning light part, wireless transceiver, and power supply part. The light receiving part of the ringer's solution detection part employed TSL260R-LF photodiode; light permeating part, Water-Clear type LED; and wireless transceiver part, the RF wireless data transceiver module, NR-FPCX. As a result of this Ringer's solution detector and transceiver design that can manage the patient efficiently, it was found that when the ringer's solution was detected by the double photodiode, the operating frequency was 11.95kHz; when it was not detected, the number was 9.6kHz. In the ringer's solution receiver, when the ringer's solution was detected, the number was 0. The corresponding unique RF code was displayed when not detected. The power used in the ringer's solution detection part was converted to the Sleep mode to operate under battery save mode. The ringer's solution transceiver can exchange wireless communication approximately within a 700m radius.

In-Band Full-Duplex Wireless Communication Using USRP (USRP 장치를 이용한 동일대역 전이중 무선통신 연구)

  • Park, Haeun;Yoon, Jiyong;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • The implementation of an in-band full-duplex wireless communication system is demonstrated in this study. In the analog/RF domain, the self-interference(SI) signal is reduced using a separate antenna for the transmitter and receiver paths, and most of the SI signal is canceled in the digital domain. A software defined radio(SDR) is used to implement the in-band full-duplex wireless communication system. The USRP X310 device uses transmitting and receiving antennas. By adjusting the gain of the transmitting and receiving ends of the SDR device, the magnitude of the SI signal entering the receiving antenna, and the size of the received signal from the outside, are both set to -64 dB. To verify the in-band full-duplex wireless communication performance, the source data is image and orthogonal frequency-division multiplexing is used for modulation. A WiFi standard frame with a carrier frequency of 2.67 GHz and bandwidth of 20 MHz is used. In the received signal, the SI signal is canceled by digital signal processing and the SI signal is attenuated by up to 34 dB. OFDM demodulation was impossible when the SI signal was not removed. However, the bit error rate is reduced to $2.63{\times}10^{-5}$ when the SI signal is attenuated by 34 dB, and no error is detected in the 100 Mbit data output as a result of passing through the Viterbi decoder.

A Development of DDS Based Chirp Signal Generator and X-Band Transmitter-Receiver for Small SAR Sensor (DDS 기반의 소형 SAR 시스템 송수신장비 개발)

  • Song, Kyoung-Min;Lee, Ki-Woong;Lee, Chang-Hyun;Lee, Woo-Kyung;Lee, Myeong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2016
  • UAVs(Unmanned Aerial Vehicle) can be used in variant fields fornot only combat, but also recon, observation and exploration. Moreover, UAVs capacity can be expanded to impossible missions for existing surveillance system such as SAR(Synthetic Aperture Radar) technology that collecting images from all weather conditions. In recent days, with development of highly efficient IC and lightened system technology, there are significant increase of researches and demands to make SAR sensor as a payload of UAV. Therefore, this paper contains development process and results of small signal generator and RF device as a core module of SAR system based on the digital device of DDS.

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

An Emergency Alert Message Broadcasting System using Null-Packet on Digital TV Broadcasting

  • Kim, Yoo-Won;Park, Seung-Bo;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1767-1777
    • /
    • 2010
  • In digital TV broadcasting, such as terrestrial, cable, satellite, and IPTV, the head-end of digital TV broadcasting has a more complicated transmission structure than that of analog TV broadcasting. Furthermore, digital TV broadcasting has a feature that supports multiplex models, such as Multiple Program Transport Stream (MPTS). Therefore, the purpose of our work was to design and examine a more efficient new system of emergency alert message transmission to support the digital TV broadcasting environments. Digital TV broadcasting is the IP generation or RF transmission of 8-VSB, QAM, and QPSK modulated through a multiplexer or re-multiplexer multiplexed stream as a MPEG-2 Transport Stream after content encoding. The new system proposed in this paper transmits an emergency alert message without scrambling after replacing the PID and payload of the -packet with the message prototype in the TS stream from the multiplexer. If we need to transmit an emergency alert message under digital TV broadcasting services, then the receiver first checks the PID of each packet in the TS stream for the emergency alert message. Next, if a packet is determined to be an emergency alert message, then the set-top box displays the message on the TV screen using its function of On Screen Display, or the PC based software displays the message on the monitor screen using its function of overlay with user interface if the packet is found to be an emergency alert message. We have designed an emergency alert message protocol and a system model. By experiments and analysis of the system, we concluded that the system achieved efficiency and the ability to send and receive emergency alert messages using the system under different digital TV broadcasting service environments.

Enhanced-x VSB System Development for Next Generation Terrestrial DTV RF Transmission (차세대 지상파 DTV 전송시스템 개발)

  • Kim, Sung-Hoon;Lee, Jea-Young;Lee, Soo-In;Ahn, Chie-Teuk;Kim, Ki-Doo
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.120-127
    • /
    • 2007
  • In this paper, we describe a new 1/4 rate robust modulation techniques for Enhanced-x VSB system which is fully backward compatible with ATSC 8-VSB standard. 1/4 rate mode Enhanced-xVSB system provides broadcasters with a wide choice of trade-offs of data rate vs amount of robustness of enhanced data for pedestrian/mobile services. Lab test results of proposed Enhanced-x VSB 1/4 rate mode robust stream are a significantly improved multipath as well as AWGN reception performance for Enhanced-x VSB receiver. We suggest an Enhanced-x VSB terrestrial broadcasting system for ATSC HDTV and pedestrian/portable TV simultaneous broadcasting service providing.

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

A Study on the Fabrication of the Low Noise Amplifier Using Resistive Decoupling circuit and Series feedback Method (저항결합 회로와 직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구)

  • 유치환;전중성;황재현;김하근;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.190-195
    • /
    • 2000
  • This paper presents the fabrication of the LNA which is operating at 2.13∼2.16 GHz for IMT-2000 lot-end receiver using series feedback and resistive decoupling circuit. Series feedback added to the source lead of a transistor keep the low noise characteristics and drop the input reflection coefficient of amplifier simultaneously. Also, it increases the stability of the LNA. Resistive decoupling circuit is suitable for input stage matching because a signal at low frequency is dissipated by a resistor in the matching network The amplifier consist of GaAs FET ATF-10136 for low noise stage and VNA-25 which is internally matched MMIC for high gain stage. The amplifier is fabricated with both the RF circuits and self bias circuit on the Teflon substrate with 3.5 permittivity. The measured results of the LNA which is fabricated using above design technique are presented more than 30 dB in gain P$\_$ldB/ 17 dB and less than 0.7 dB in noise figure, 1.5 in input$.$output SWR(Standing Wave Ratio).

  • PDF

Design and implementation of remote controlling wireless transmission unit using duplex-FSK (Duplex-FSK 원격제어 무선 전송부 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.629-635
    • /
    • 2009
  • The FSK duplex remote controlling wireless transmission units with a common local oscillator circuit for transmitter and receiver are designed and implemented in this paper. In the FSK full-duplex the channel frequency for Tx/Rx is allocated, a common switching oscillator circuit for Tx/Rx is designed in the FSK half-duplex scheme. Both of FSK units get functions of automatic channel detection for busy channels and channel configuration for an idle channel in order to reduce the RF channel interference and are designed as a remote controller with small-sized low power of 10mW and the 400MHz-colpitz type PLL configuration of 50kHz channel separation. The full-duplex Tx/Rx link frequency gets frequency difference of 42.8MHz, which is double of 21.4MHz IF frequency.