• Title/Summary/Keyword: RF/IF

검색결과 442건 처리시간 0.207초

Design of Sub-Harmonics Pumped Ring Mixer (SHP 링혼합기 설계)

  • 김갑기;박용식;최충연;최병하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제11권8호
    • /
    • pp.1392-1398
    • /
    • 2000
  • In this paper, Sub Harmonic Ring Mixer using Anti-Parallel Diode Pair is studied. Conventional mixers mix LO signal with RF signal and, obtain IF signal from the difference between LO and RF. Sub harmonic ring mixers using APDP mix RF signal with the second harmonic of LO signal, LO frequency needed for conventional receiver is reduced by 1/2.The produced mixer showed 12 dB conversion loss, and 1 dB compression point of IF signal, in respect to RF signal, was found at the 0 dBm RF signal. Isolation LO/IF and LO/RF is 24.6 dB and 22.5 dB respectively. Isolation RF/LO and LO/RF is 32.6 dB and 22.5 dB respectively.

  • PDF

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • 제2권2호
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Design of a CMOS Tx RF/IF Single Chip for PCS Band Applications (PCS 대역 송신용 CMOS RF/IF 단일 칩 설계)

  • Moon, Yo-Sup;Kwon, Duck-Ki;Kim, Keo-Sung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • 제7권2호
    • /
    • pp.236-244
    • /
    • 2003
  • In this paper, RF and IF circuits for mobile terminals which have usually been implemented using expensive BiCMOS processes are designed using CMOS circuits, and a Tx CMOS RF/IF single chip for PCS applications is designed. The designed circuit consists of an IF block including an IF PLL frequency synthesizer, an IF mixer, and a VGA and an RF block including a SSB RF mixer and a driver amplifier, and performs all transmit signal processing functions required between digital baseband and the power amplifier. The phase noise level of the designed IF PLL frequency synthesizer is -114dBc/Hz@100kHz and the lock time is less than $300{\mu}s$. It consumes 5.3mA from a 3V power supply. The conversion gain and OIP3 of the IF mixer block are 3.6dB and -11.3dBm. It consumes 5.3mA. The 3dB frequencies of the VGA are greater than 250MHz for all gain settings. The designed VGA consumes 10mA. The designed RF block exhibits a gain of 14.93dB and an OIP3 of 6.97dBm. The image and carrier suppressions are 35dBc and 31dBc, respectively. It consumes 63.4mA. The designed circuits are under fabrication using a $0.35{\mu}m$ CMOS process. The designed entire chip consumes 84mA from a 3V supply, and its area is $1.6㎜{\times}3.5㎜$.

  • PDF

Design of Microwave Direct Conversion Receiver Using Sub-Harmonics Pumped Ring Mixer (SHP 링혼합기를 이용한 마이크로파 직접변환 수신기 설계)

  • Kim, Kab-Ki;Kim, Han-Suk;Yoo, Hong-Gil;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • 제3권1호
    • /
    • pp.69-78
    • /
    • 1999
  • In this paper, direct conversion receiver was designed to even harmonic anti-paralled diode pair ring mixer. Using a second harmonic component of LO instead of LO signal and RF signal are mixed by SHP(Sub Harmonic Pumped) mixer with anti-parallel diode pair. Canceling the harmonics of LO signal in ring mixer, SHP mixer using anti-parallel diode pair could mostly reduce the radiation of LO signal through a input port the most, good isolation characteristic, and low spurious characteristic by LO signal was shown over broad band. The produced SHP mixer showed LO/IF, RF/IF and LO/RF isolation was 24.6dB,36.2dB and 22.5dB respectively. And conversion loss was measured 15.6dB, IF output -35.6dBm with -20dBm RF input and 5.5dBm LO signal. 1dB compression point of If signal, in respect to RF signal, was found at the 0dbm RF signal.

  • PDF

Design of Double Balanced MMIC Mixer for Ka-band (Ka-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제8권2호
    • /
    • pp.227-231
    • /
    • 2004
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the schottky diode of InGaAs/CaAs p-HEMT process has been developed for receiver down converter of Ka-band. A different approach of MMIC mixer structure is applied for reducing the chip size by the exchange of ports between IF and LO. This MMIC covers with RF (30.6∼31.0㎓)and IF (20.8∼21.2㎓). According to the on-wafer measurement, the MMIC mixer with miniature size of 3.0mm1.5mm demonstrates conversion loss below 7.8㏈, LO-to-RF isolation above 27㏈, LO-to-IF isolation above 19㏈ and RF-to-IF isolation above 39㏈, respectively.

An Integrated Si BiCMOS RF Transceiver for 900MHz GSM Digital Handset Application (II) : RF Transmitter Section (900MHz GSM 디지털 단말기용 Si BiCMOS RF 송수신 IC 개발 (II) : RF 송신단)

  • Lee, Kyu-Bok;Park, In-Shig;Kim, Jong-Kyu;Kim, Han-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • 제35S권9호
    • /
    • pp.19-27
    • /
    • 1998
  • The Transmitter part of single RF transceiver chip for an extended GSM handset application was circuit-designed, fabricated adn evaluated. The RF-IC Chip was processed by 0.8${\mu}m$ Si BiCMOS, 80 pin TQFP of $10 {\times} 10mm$ size, 3.3V operated RF-IC reveals, in general, quite reasonable integrity and RF performances. This paper describes development resuts of RF transmitter section, which includes IF/RF up-conversion mixer, IF/RF polyphase and pre-amplifier. The test results show that RF transmitter section is well operated within frequency range of 880~915MHz, which is defined on the extended GSM(E-GSM) specification. The transmitter section also reveals moderate power consumption of 71mA and total output power of 8.2dBm.

  • PDF

HEMT Mixer for Phase Conjugator Applications in the LS Band (공액 위상변위기용 LS 밴드 HEMT 혼합기)

  • 전중창
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제8권2호
    • /
    • pp.239-244
    • /
    • 2004
  • In this paper, we have developed a frequency mixer which can be used as a microwave phase conjugator in the LS band retrodirective antenna system. The mixer as a phase conjugator must have an If signal of which frequency is nearly as high as that of an RF signal, so this fact brings difficulty in the combination of input signals and the design of impedance matching circuit. The circuit configuration is chosen to be of the gate mixer using a pseudomorphic HEMT device. The operating frequencies are 4.00 ㎓, 2.01 ㎓, and 1.99 ㎓ for LO, RF, and IF, respectively. Conversion gain is measured to be 12.5 ㏈ and 1 ㏈ compression point -34 ㏈m at the LO power of -7 ㏈m. The mixer fabricated in this research is the single-ended type, where RF leakage signal appears inevitably at the If port because RF and If frequencies are almost the same. The circuit topology suggested here can be applied directly to the design of balanced-type mixers and phase conjugators.

Design of Image Rejection SSB Modulator for X-Band Monopulse RADAR using Waveguide Hybrid Coupler (도파관 하이브리드 커플러를 이용한 X-대역 모노펄스 레이더용 이미지 제거 SSB 변조기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제48권6호
    • /
    • pp.34-40
    • /
    • 2011
  • From the present paper researched about the Design of Image Rejection SSB Modulator for X-Band Monopulse RADAR using Waveguide Hybrid Coupler. Generally, SSB modulator mixes IF(RF) and LO signals, and then it converts to RF(IF) frequency band. In this case, in order to transmit one sideband from RF band, SSB modulator is demanded the removal of image and LO signal. The balanced mixer was designed using waveguide hybrid coupler and crystal mixer diode to mix LO and IF signal. And also the IF Amplifier was designed for IF(+) and IF(-) signal generation which have $90^{\circ}$ phase differences which are suitable in two crystal mixer diode inputs. In order to maintain a high electric reliability from high frequency band the waveguide and IF amplifier's case were manufactured with aluminum using deep brazing techniques. The test result of SSB modulator, LO and sideband signal rejection ratio were 14.2dB and 18.5dB respectively.

Compensation of Timing Offset and Frequency Offset in the Multi-Band Receiver with Sub-Sampling Method (Sub-Sampling 방식의 다중 대역 수신기에서 타이밍 오프셋과 주파수 오프셋 보상)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제22권5호
    • /
    • pp.501-509
    • /
    • 2011
  • Software defined radio(SDR) has a goal that places the analog-to-digital converter(ADC) as near the antenna as possible. But current technique actually can't do analog-to-digital converting about RF band signals. So one method is studying that samples RF band signals to IF band. One of the ways Sub-Sampling technique can convert signals from RF band to IF band without oscillator. If Sub-Sampling technique is used, over 2 bands can convert signals from RF band to IF band. But due to the filter performance in RF band, it is possible to generate interference between signals that is converted in low frequency band. The effect degrades performance. In this paper, we propose one method that uses time division multiplexing(TDM) method as a solution to avoid interference between signals. By doing TDM and Sub-Sampling at the same time that method can get signals without large changes of structures.

Design of 900MHz CMOS RF Front-End IC for Digital TV Tuner (디지털 TV 튜너용 900MHz CMOS RF Front-End IC의 설계 및 구현)

  • 김성도;유현규;이상국
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.104-107
    • /
    • 2000
  • We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.

  • PDF