• Title/Summary/Keyword: RET Model Parameters

Search Result 3, Processing Time 0.016 seconds

RET Modelling through the Phase Function Measurement at 12.5 GHz (12.5 GHz 대역 위상 함수 특성 측정을 통한 RET 모델링)

  • Han, Il-Tak;Bae, Seok-Hee;Jung, Myoung-Won;Pack, Jung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.334-340
    • /
    • 2007
  • The prediction for vegetation attenuation using the RET model recommended in the ITU-R requires six RET input parameters. Among these, 4 parameters are related to the scattering characteristics of vegetation. To extract these parameters, two methods can be used. One is to extract the parameters by curve fitting of the measured vegetation-attenuation curve with the RET prediction model, and the other is to use the additional phase function measurement data. In the former method, fitting is quite complex and it does not result in the unique results in some cases. In addition, the extracted parameters lack the physical meaning as well. Thus, in this paper, the measurement method of phase function, and the method of extracting the RET model parameters which lead to more accurate and physically more meaningful results are presented. The extracted RET model parameters are also presented. The RET modeling method, measurement data, and the extracted RET model parameters presented in this paper were submitted to the ITU-R meeting in 2006, and adapted for ITU-R report and recommendation P.833.

Measurement and Modeling of Vegetation Loss in the Frequency Range of 1~6 GHz (1~6 GHz 대역 수풀 손실 특성 측정 및 모델링)

  • Han, Il-Tak;Jung, Myoung-Won;Back, Jung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.96-104
    • /
    • 2007
  • Currently, there is a lack of suitable prediction model and measurement data for vegetation loss. So in this paper, vegetation loss measurement has been performed for seven different tree-species, including dawn-redwood tree, plane tree, pine tree and hymalaya cedar in the frequency range of $1.0{\sim}6.0\;GHz$, for the two years, from 2005 to 2006 years. And then, extraction and revision for the proposed RET model input parameters in ITU-R P.833 has been performed. The key results of measurement and RET modeling has been presented in this paper. The results of this study have been adapted for ITU-R recommendation at the ITU-R meeting in 2005 and 2006.

Measurement and Modeling of Vegetation Loss in the Frequency Range of 1 $\sim$ 6 (1 $\sim$ 6 GHz대역 수풀손실 특성 측정 및 모델링)

  • Park, Yong-Ho;Jung, Myoung-Won;Han, Il-Tak;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.163-168
    • /
    • 2005
  • Attenuation in vegetation is important, for both terrestrial and earth-space systems. However, the wide range of conditions and types of foliage makes it difficult to develop a generalized prediction procedure. Currently, there is also a lack of suitably prediction model and measured experimental data for vegetation loss. So in this paper, vegetation loss data for four different tree-species, including Dawn-redwood tree, Plane tree, Pine tree and Fir tree are obtained by measurement in the frequency range of 1.0 $\sim$ 6.0 GHz. The through or scattered component is calculated using a model based upon the theory of RET(Radiative Energy Transfer) and RET modeling parameters are extracted from the measured data.

  • PDF