• Title/Summary/Keyword: RESRAD 코드

Search Result 13, Processing Time 0.019 seconds

Uncertainty Management on Human Intrusion Scenario Assessment of the Near Surface Disposal Facility for Low and Intermediate-Level Radioactive Waste: Comparative Analysis of RESRAD and GENII (중저준위방사성폐기물 표층처분시설의 인간침입 시나리오 평가에 대한 불확실성 관리: RESRAD와 GENII의 비교분석)

  • Kim, Minseong;Hong, Sung-Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • In order to manage the uncertainty about the evaluation and analysis of the human intrusion scenario of the Gyeongju Low and Intermediate Level Radioactive Waste(LILW) disposal facility, the calculation result by the GENII code was assessed using the RESRAD code, which was developed to evaluate the radiation effects of contaminated soil. The post-drilling scenario was selected as a human intrusion scenario into the near-surface disposal facility to analyze the uncertainty of the modeling by identifying any limitations in the simulation of each code and comparing the evaluation results under the same input data conditions. The results revealed a difference in the migration of some nuclides between the codes, but confirmed that the dose trends at the end of the post-closure control period were similar for all exposure pathways. Based on the results of the dose evaluation predicted by RESRAD, sensitivity analysis on the input factors was performed and major input factors were derived. The uncertainty of the modeling results and the input factors were analyzed and the reliability of the safety evaluation results was confirmed. The results of this study can be applied to the implementation 'Safety Case Program' for the Gyeongju LILW disposal facility.

Safety Assessment on the Incineration Disposal of Regulation Exempt Waste by RESRAD Code (RESRAD 코드를 활용한 규제해제 폐기물 소각처분에 대한 안정성 평가)

  • Kim, Hui-Gyeong;Han, Sang-Wook;Park, Su-Ri;Kim, Byung-Jick
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • In this paper, risk assessment was conducted to verify self - disposal requirements by landfill for exempted incineration ash by using Resrad Ver.6.5 computer code. The result of risk assessment by landfill for the incineration by-product is that individual dose is $6.91{\times}10^{-2}{\mu}Sv\;y-1$ and collective dose is $3.475{\times}10^{-7}man-Sv\;y-1$. It proved that the result meets reference dose of individual dose $10{\mu}Sv\;y-1$ and collective dose 1 man-Sv y-1 for general public. According to the current 'Nuclear Safety Commission Notice [No. 2014-3]', it states that the exempted wastes can be disposed of by incineration, landfill and recycling. However, most of recently documents and papers related to exempted wastes are disposed of by landfill and recyling and it could not confirm the case of exempt by incineration. If the national consensus is derived and treating the waste by using process of incineration is activated, it could be considered to treat low level of radiation wastewater and activated carbon excluded from exempted waste because of nuclide $^3H$ and $^{14}C$.

A Study on the Application of Standards for Clearance of Metal Waste Generated During the Decommissioning of NPP by Using the RESRAD-RECYCLE (RESRAD-RECYCLE을 활용한 원전 해체 시 발생하는 금속폐기물의 자체처분 기준 적용 연구)

  • Song, Jong Soon;Kim, Dong Min;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.305-320
    • /
    • 2016
  • The metal waste generated during nuclear power plant decommissioning constitutes a large proportion of the total radioactive waste. This study investigates the current status of domestic and international regulatory requirements for clearance and the clearance experience of domestic institutions. The RESRAD-RECYCLE code was used for analyzing the clearance of the metal wastes generated during actual nuclear power plant decommissioning, and assessment of the exposure dose of twenty-six scenarios was carried out. The evaluation results will be useful in preliminary analysis of clearance and recycling during nuclear power plant decommissioning. As a next step, the effects of reducing disposal costs by clearance can be studied.

Application of MARSSIM for Final Status Survey of the Decommissioning Project (해체사업의 최종현황조사를 위한 MARSSIM 적용)

  • Hong, Sang-Bum;Lee, Ki-Won;Park, Jin-Ho;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • The release of a site and building from regulatory control is the final stage of the decommissioning process. The MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual) provides overall framework for conducting data collection for a final status survey to demonstrate compliance with site closure requirements. The KAERI carried out establishing a final status survey by using the guidance provided in the MARSSIM for of a site and building of the Korea Research Reactor. The release criteria for a site and building were set up based on these results of the site specific release levels which were calculated by using RESRAD and RESRAD-Build codes. The survey design for a site and building was classified by using the survey dataset and potential contamination. The number of samples in each survey unit was calculated by through a statistical test using the collected data from a scoping and characterization survey. The results of the final status survey were satisfied the release criteria based on an evaluation of the measured data.

Preliminary Evaluation of Clearance Level of Uranium in Metal Waste Using the RESRAD-RECYCLE Code (RESRAD-RECYCLE 전산코드를 활용한 금속폐기물 내 우라늄 자체처분 허용농도 예비 평가)

  • SunWoo Lee;JungHwan Hong;JungSuk Park;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.457-469
    • /
    • 2023
  • The clearance level by nuclide is announced by the Nuclear Safety and Security Commission. However, the clearance level of uranium existing in nature has not been announced, and research is needed. Therefore, the purpose of this study was to evaluate the clearance level of uranium nuclides appropriate to domestic conditions preliminary. For this purpose, this study selected major processes for recycling metal wastes and analyzed the exposure scenarios and major input factors by investigating the characteristics of each process. Then, the radiation dose to the general public and workers was evaluated according to the selected scenarios. Finally, the results of the radiation dose per unit radioactivity for each scenario were analyzed to derive the clearance level of uranium in metal waste. The results of the radiation dose assessment for both the general public and workers per unit radioactivity of uranium isotopes were shown to meet the allowable dose (individual dose of 10 µSv y-1 and collective dose of 1 Man-Sv y-1) regulated by the Nuclear Safety and Security Commission. The most conservative scenarios for volumetric and surface contamination were evaluated for the handling of the slag generated after the melting of the metal waste and the direct reuse of the contaminated metal waste into the building without further disposal. For each of these scenarios, the radioactivity concentration by uranium isotope was calculated, and the clearance level of uranium in metal waste was calculated through the radioactivity ratio by enrichment. The results of this study can be used as a basic data for defining the clearance level of uranium-contaminated radioactive waste.

Safety Evaluation of Clearance of Radioactive Metal Waste After Decommissioning of NPP (원전해체후 규제해제 대상 금속폐기물에 대한 자체처분 안전성 평가)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Hwang, Young-Hwan;Lee, Mi-Hyun;Lee, Ji-Hoon;Hong, Sang-Bum
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.291-303
    • /
    • 2020
  • The Kori-Unit 1 nuclear power plant, which is scheduled to be decommissioned after permanent shutdown, is expected to generate large amounts of various types of radioactive waste during the decommissioning process. Among these, nuclear reactors and internal structures have high levels of radioactivity and the dismantled structure must have the proper size and weight on the primary side. During decommissioning, it is important to prepare an appropriate and efficient disposal method through analysis of the disposal status and the legal restrictions on wastes generated from the reactors and internal structures. Nuclear reactors and internal structures generate radioactive wastes of various levels, such as medium, very low, and clearance. A radiation evaluation indicates that wastes in the clearance level are generated in the reactor head and upper head insulation. In this study, a clearance waste safety evaluation was conducted using the RESRAD-RECYCLE code, which is a safety evaluation code, based on the activation evaluation results for the clearance level wastes. The clearance scenario for the target radioactive waste was selected and the maximum individual and collective exposure doses at the time of clearance were calculated to determine whether the clearance criteria limit prescribed by the Nuclear Safety Act was satisfied. The evaluation results indicated that the doses were significantly low, and the clearance criteria were satisfied. Based on the safety assessment results, an appropriate metal recycle and disposal method were suggested for clearance, which are the subject of the deregulation of internal structures of nuclear power plant.

Safety Assessment for the self-disposal plan of clearance radioactive waste after nuclear power plant decommissioning (원전해체후 규제해제 콘크리트 방사성 폐기물의 자체처분을 위한 안전성 평가)

  • Choi, YoungHwan;Ko, JaeHun;Lee, DongGyu;Kim, HaeWoong;Park, KwangSoo;Sohn, HeeDong
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.63-74
    • /
    • 2020
  • The Kori-Unit 1 nuclear power plant, which is scheduled for decommissioning after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during decommissioning process. For concrete radioactive waste, which is expected to occupy the most amount, it is important to analyze the current waste disposal status and legal limitations and to prepare an appropriate and efficient disposal method. Concrete radioactive waste is waste of various levels, of which the clearance level is bioshield concrete. In this paper, clearance radioactive waste safety evaluation was performed using the RESRAD code, which is a safety evaluation code, based on the activation evaluation results for the wastes with the clearance level. The clearance scenario of the target radioactive waste was selected and the individual's exposure dose was calculated at the time of clearance to determine whether the clearance criteria limit prescribed by the Nuclear Safety Act was satisfied. As a result of the evaluation, the results showed significantly lower results and satisfied the criteria value. Based on the results of this clearance safety assessment, the appropriate disposal method for bioshield concrete, which are the clearance wastes of subject of deregulation, was suggested.

Residual Radioactivity Investigation & Radiological Assessment for Self-disposal of Concrete Waste in Nuclear Fuel Processing Facility (콘크리트 폐기물의 자체처분을 위한 잔류방사능 조사 및 피폭선량평가)

  • Seol, Jeung-Gun;Ryu, Jae-Bong;Cho, Suk-Ju;Yoo, Sung-Hyun;Song, Jung-Ho;Baek, Hoon;Kim, Seong-Hwan;Shin, Jin-Seong;Park, Hyun-Kyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.91-101
    • /
    • 2007
  • In this study, domestic regulatory requirement was investigated for self-disposal of concrete waste from nuclear fuel processing facility. And after self-disposal as landfill or recycling/reuse, the exposure dose was evaluated by RESRAD Ver. 6.3 and RESRAD BUILD Ver.3.3 computing code for radiological assessments of the general public. Derived clearance level by the result of assessments for the exposure dose of the general public is 0.1071Bq/g (3.5% enriched uranium) for landfill and $0.05515Bq/cm^2$ (5% enriched uranium) for recycling/reuse respectively. Also, residual radioactivity of concrete waste after decontamination was investigated in this study. The result of surface activity is $0.01Bq/cm^2\;for\;{\alpha}-emitter$ and the result of radionuclide analysis for taken concrete samples from surface of concrete waste is 0.0297Bq/g for concentration of $^{238}U$, below 2w/o for enrichment of $^{235}U$ and 0.0089Bq/g for artificial contamination of $^{238}U$ respectively. Therefore, radiological hazard of concrete waste by self-disposal as landfill and recycling/reuse is below clearance level to comply with clearance criterion provided for Notice No.2001-30 of the MOST and Korea Atomic Energy Act.

  • PDF