• Title/Summary/Keyword: REFERENCE ECOSYSTEM

Search Result 108, Processing Time 0.026 seconds

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

A Comparison between BSCS's Guide and the Korean Curriculum for Developing Biological Literacy (생물학적 소양의 함양을 위한 BSCS 통합 권고안과 6,7차 교육과정 비교)

  • Koo, Soo-Jeong;Kim, Young-Shin;Kim, Byung-Suk;Lee, Sung-Jo;Chung, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.3
    • /
    • pp.396-410
    • /
    • 2000
  • In this study, the concept presentation form, the content coherence of sub-dimensional concepts and the number of concepts of the 6th and the 7th Korean curriculum were analyzed comparing the guide to developing the secondary biology curricula to develop biological literacy with BSCS. According to the result, the discrimination between concept levels in the frame of contents of the Korean curricula is insufficient, because each of concepts presented in the knowledge domain as upper level and sub-dimensional concept elements as lower level are simply arrayed. Considering too much concepts of ecosystem, genetics, reproduction and metabolism, there should be an effort to reform the biological curriculum to include concepts evenly, not in the biased state, to reflect all the 6 unifying principles by BSCS for developing students' biological literacy. Finally there should be an effort to reflect the characteristics of each subjects concretely among Science 10, Biology I and Biology IT in the 7th curriculum considering the result that essential concepts to develop biological literacy are presented more in some principles of Biology II than Biology I. Thinking the results of the present study, concrete discussions should be made to set up the standard reference about biological literacy and to present essential concepts for teaching and learning to develop it in the process of biology textbook development for meeting the 7th Korean curriculum and in the development of 8th Korean curriculum in advance.

  • PDF

A Study on the Determinants of Investment in Startup Accelerators (스타트업 액셀러레이터의 투자결정요인에 대한 연구)

  • Heo, Joo-yeun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.5
    • /
    • pp.13-35
    • /
    • 2020
  • Startup accelerators are a new type of investors providing a certain amount of shares for imparting education, mentoring, networking, and providing space and seed money that can directly resolve the difficulties faced by nascent entrepreneurs (Clarysse, 2016). Startup accelerators have expanded worldwide as their influence over the startup ecosystem has increasingly been established (Pauwels et al., 2016; Cohen & Hochberg, 2014). This study was conducted to derive investment determinants of startup accelerators that are emerging as major investment players around the world. To this end, the accelerator-type determinants of investment were derived. As previous research on this topic is nonexistent, this process involved qualitative meta-synthesis, literature reviews, observation, and in-depth interviews. First, more than 30 research papers were examined for the determinants of investment for firms at an early stage of their foundation, and the categories and determinants of investment in the relevant studies were comparatively analyzed using qualitative meta-synthesis. Further, related data were investigated to identify the characteristics of accelerators, and the startup evaluation process of US accelerators was studied. The more than 100 questions raised during this process were coded to examine the determinants of investment that accelerators considered important. In-depth interviews were conducted with four US accelerators to identify the characteristics of accelerators and key determinants of investment. Ultimately, 5 categories of accelerator-type determinants of investment and 26 subordinate determinants of investment were derived. The results were verified and supplemented by consulting with seven accelerators in Korea. The results were confirmed after pilot tests and verification by seven domestic accelerators. After confirming the accelerator-type determinants, the reliability of them was verified by examining the importance and priority of each category through the quantitative survey of Korean accelerators. The research that elicited the accelerator-type investment determinants is the first research and is expected to be a major reference to the progress of subsequent studies. This research that systematically derived the investment determinants of the accelerator is expected to make major contributions to the progress of follow-up studies, the process of selecting startups, and the investment decision-making process of the accelerators.

Introduction of Denitrification Method for Nitrogen and Oxygen Stable Isotopes (δ15N-NO3 and δ18O-NO3) in Nitrate and Case Study for Tracing Nitrogen Source (탈질미생물을 이용한 질산성 질소의 산소 및 질소 동위원소 분석법 소개)

  • Lim, Bo-La;Kim, Min-Seob;Yoon, Suk-Hee;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of denitrification bacteria method (Pseudomonas chlororaphis ssp. Aureofaciens ($ATCC^{(R)}$ 13985)), three reference (IAEA-NO-3 (Potassium nitrate $KNO_3$), USGS34 (Potassium nitrate $KNO_3$), USGS35 (Sodium nitrate $KNO_3$)) were analyzed 5 times repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values of IAEA-NO-3, USGS 34 and USGS35 were ${\delta}^{15}N:4.7{\pm}0.1$${\delta}^{18}O:25.6{\pm}0.5$‰, ${\delta}^{15}N:-1.8{\pm}0.1$${\delta}^{18}O:-27.8{\pm}0.4$‰, and ${\delta}^{15}N:2.7{\pm}0.2$${\delta}^{18}O:57.5{\pm}0.7$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated isotope values of potential nitrogen source (soil, synthetic fertilizer and organic-animal manures) and temporal patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values in river samples during from May to December. ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values are enriched in December suggesting that organic-animal manures should be one of the main N sources in those areas. The current study clarifies the reliability of denitrification bacteria method and the usefulness of stable isotopic techniques to trace the anthropogenic nitrogen source in freshwater ecosystem.

Soil Salinity and Vegetation Distribution at Four Tidal Reclamation Project Areas (4개 간척 지구에 분포하는 식생과 토양 염류농도)

  • Lee, Seung-Heon;Ji, Kwang-Jae;An, Yeoul;Ro, Hee-Myong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.79-86
    • /
    • 2003
  • This research was conducted to present reference data to be used as newly reclaimed tidal land management. We investigated vegetation succession at 4 reclaimed/reclaiming project areas and discussed relationship with soil and vegetation trhrough investigation and analysis soil chemical characteristics at 2 areas. 14 families 58 kinds were investigated. Vegetation were variou at Dea-Ho conservation polt and Seok-Mun National Industrial Area which are maintaining naturally. Vegetation were simple at Hong-Bo and Dongjin and MinKyong river areas which effected sea water. Common species that were investigated at 9 sites were Suaeda asparagoides, Aster tripolium, Phragmites australis, Suaeda maritima, Suaeda japonica, Carex scabrifolis. As soil desalinization progressing, soil classified at first saline-soidc soil, the nest saline soil and then normal soil. Chenopodiaceae revealed at about 30 dS/m of soil ECe and existed to 10 dS/m of soil ECe. At about 20 dS/m of soil ECe. Aster tripolium, Calamagrostis epigeios, and Sonchus brachyotus revealed and then non-halophytes and common plants at inland revealed at low soil ECe of about 10 dS/m. However it was not to progress vegetation sucdession and soil desalinization at the same time, owing to input of seeds or plants ect from out-ecosystem. So for promotion of vegetation at newly reclaimed tidal land, we proposed that it was very effective to plant artificially halophytes or suitable species through soil test.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.