• Title/Summary/Keyword: REF/DIF S model

Search Result 4, Processing Time 0.019 seconds

Hydraulic Experiments of Stem Waves along a Vertical Wall due to Unidirectional Random Waves (직립벽을 따른 일방향 불규칙파의 연파실험)

  • Lee, Jong-In;Choi, Jun-Woo;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.49-61
    • /
    • 2008
  • This study investigates the characteristics of stem waves along a vertical wall generated by obliquely incident random waves through laboratory experiments conducted in a wave basin and numerical simulations using REF/DIF S model developed by Kirby and $\ddot{O}zkan$(1994). The investigation is focused on the effect of random waves on the propagation characteristics of stem waves and the difference or similarity between monochromatic and random waves. The results of REF/DIF S model are compared with laboratory measurements and good agreements are obtained. The relative significant wave height along a wall is almost same with monochromatic condition, but the wave pattern along normal to the wall shows a significant difference.

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Numerical Simulation of Jet-like Currents Influenced by Irregular Waves (불규칙 파랑의 영향을 받는 유사제트류의 수치모의)

  • Choi, Jun-Woo;Park, Won-Kyung;Bae, Jae-Seok;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.491-497
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations were conducted using a model system of REF/DIF(a wave model) and SHORECIRC(a current model). In the simulations, irregular waves refracted due to the jet-like opposing current were focused along the centerline of current, and the jet-like current was spreaded earlier when the wave heights become larger. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the radiation stress gradients acting in transverse direction have a more significant effect on the jet-like current than its gradients acting in flowing direction which tend to accelerate the current do. In conclusion, it is indispensible to take into account the interaction between waves and current when the jet-like current such as river mouth meets opposing waves.

Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

  • Gowthaman, Rajamanickam;Kumar, V. Sanil;Dwarakish, Gowdagere Siddaramaish;Shanas, P.R.;Jena, Basanta Kumar;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.939-950
    • /
    • 2015
  • Wave-induced Longshore Sediment Transport (LST) play an important role in the dynamics of the Dhanushkodi sandspit located southeast of Rameshwaram. The LST along the Dhanushkodi coast is studied based on data collected simultaneously in Gulf of Mannar (GoM) and Palk Bay (PB) using directional waverider buoys. The numerical model REF/DIF1 was used to calculate the nearshore waves and the LST rate was estimated using three different formulae. The model validation was done based on the measured nearshore waves using InterOcean S4DW. Numerical model LITPACK was also used for simulating non-cohesive sediment transport and the LITLINE module was used to study the shoreline evolution over 5 years. Low net annual LST along PB (${\sim}0.01{\times}10^6m^3$) compared to the GoM region ($0.3{\times}10^6m^3$) were due to the weak waves. Accretion in the region led to growth of the Dhanushkodi sandspit by 65 m during the period 2010-2015.