• Title/Summary/Keyword: REAL-TIME RT-PCR

Search Result 651, Processing Time 0.034 seconds

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

COVID-19 Surveillance using Wastewater-based Epidemiology in Ulsan (울산지역 하수기반역학을 이용한 코로나19 감시 연구)

  • Gyeongnam Kim;Jaesun Choi;Yeon-Su Lee;Dae-Kyo Kim;Junyoung Park;Young-Min Kim;Youngsun Choi
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.260-265
    • /
    • 2024
  • During the coronavirus 2019 (COVID-19) pandemic, wastewater-based epidemiology was used for surveying infectious diseases. In this study, wastewater surveillance was employed to monitor COVID-19 outbreaks. Wastewater influent samples were collected from four sewage treatment plants in Ulsan (Gulhwa, Yongyeon, Nongso, and Bangeojin) between August 2022 and August 2023. The samples were concentrated using the polyethylene glycol-sodium chloride pretreatment method. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was extracted and detected using real-time polymerase chain reaction. Next generation sequences was used to perform correlation analysis between SARS-CoV-2 concentrations and COVID-19 cases and for COVID-19 variant analysis. A strong correlation was observed between SARS-CoV-2 concentrations and COVID-19 cases (correlation coefficient, r = 0.914). The COVID-19 variant analysis results were similar to the clinical variant genomes of three epidemics during the study period. In conclusion, monitoring COVID-19 via analyzing wastewater facilitates early recognition and prediction of epidemics.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

Gene analysis of galectin-1, innate immune response gene, in olive flounder Paralichthys olivaceus at different developmental stage (넙치, Paralichthys olivaceus 발생단계별 galectin-1 유전자의 발현 분석)

  • Jang, Min Seok;Lee, Young Mee;Yang, Hyun;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.255-263
    • /
    • 2013
  • The innate immune response is fundamental defense response of vertebrates and invertebrates. Especially, the innate immune response important for larvae that lack of resistance to infectious diseases in the early stages. Galectin is one of the kinds of lectin and presents in the fish mucous that involves innate immune response. Galectin have been studied from various fishing species, but expression analysis of galectin is still unclear during early developmental stage in olive flounder. In this study, we investigated gene expression of galectin-1 from various developmental stage and tissues. We excised several tissues including the muscle, fin, eye, gill, brain, stomach, intestine, kidney, spleen and liver from adult olive flounder and confirmed gene expression of galectin-1 using RT-PCR and quantitative real-time PCR. Expression of galectin-1 was significantly higher in muscle, stomach and intestinal tissue than other tissue in adult fish (5 and 29 months). Also, galectin-1 gene was detected from 0 DAH and gradually increased to 35 DAH and since then decreased after stomach development period. Induction of galectin-1 during the early developmental stage suggest that muscle, fin and eye tissue is formed and begins the secretion of galectin this period. In addition, increased expression levels at 35 DAH suggest that due to complete formation of stomach and intestine, increase of secretion and activation of enzyme. This study shows that expression of galectin-1 during early developmental stages and adult period in olive flounder and can be expect that galectin-1 play essental role in the innate immune system throughout the whole life time. Galectin-1 is primary barrier such as skin and digestive tissue against pathogen infection, also digestive tract developmental period is important for pathogen invasion can be expected that it will serve. Mass mortality due to the disease in seed production is continuing damage, therefore these result will be meaningful about infectious disease during early developmental stages as a basic data for the study.

MicroRNA 155 Expression Pattern and its Clinic-pathologic Implication in Human Lung Cancer (폐암에서 microRNA 155의 발현 양상과 임상병리학적 의의)

  • Kim, Mi Kyeong;Moon, Dong Chul;Hyun, Hye Jin;Kim, Jong-Sik;Choi, Tae Jin;Jung, Sang Bong
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1056-1062
    • /
    • 2016
  • Lung cancer is currently the most common malignant disease and the leading cause of mortality in the world and non-small cell lung cancer (NSCLC) accounts for 75-80% of lung cancer cases. miR-155 gene was found to be over expressed in several solid tumors, such as thyroid carcinoma, breast cancer, colon cancer, cervical cancer, pancreatic ductal adenocarcinoma (PDAC) and lung cancer. The aims of this study were to define the expression of miR-155 in lung cancer and its associated clinic-pathologic characteristics. Total RNA was purified from formalin-fixed, paraffin-embedded NSCLC tissues and benign lung tissues. Expression of miR-155 in human lung cancer tissues were evaluated as mean fold changes of miR-155 in cancer tissues compared to benign lung tissues by quantitative real-time reverse transcriptase polymerase chain reaction (real-time qRT-PCR) and associations of miR-155 expression with clinic-pathologic findings of cancer. Compared with the benign control group, miR-155 expression was significantly overexpressed in NSCLCs (p=<0.001). miR-155 was more overexpressed in squamous cell carcinoma than in adenocarcinoma. Poorly differentiated tumors showed significantly overexpression of miR-155 than well-differentiated tumors (p=<0.001). Overexpression of miR-155 was significantly associated with lymph node metastasis (p=<0.05). In survival analysis for all NSCLC patients, high miR-155 expression was significantly correlated with worse overall survival (p=<0.05). These results suggested that miR-155 might play an important role in lung cancer progression and metastasis.

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Effects of High Stocking Density on the Expression of Metabolic Related Genes in Two Strains of Chickens (닭의 고밀도사양 스트레스가 품종 간 체내대사 유전자 발현에 미치는 영향)

  • Sohn, Sea Hwan;Jang, In Surk;An, Young Sook;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.51-59
    • /
    • 2015
  • Chickens are exposed to the external and internal stressors such as low and high temperature, high stocking density, feed restriction and disease. There have been a few studies on gene expressions through the investigation of chickens under direct exposure to the stress of high stocking density. The objective of the present study was to determine the expressions of genes associated with stress, endoplasmic reticulum (ER)-stress, lipid and glucose metabolism in two strains of chickens, Korean Native Chicken (KNC) and White Leghorn (WL), raised in high stocking density. A total of 164 chickens aged 40 weeks were randomly allotted to a $540cm^2/bird$ stocking density (control), whereas the chickens in a high density group were assigned in a $311cm^2/bird$ stocking density with feeding ad libitum for 10 weeks. Total RNA was extracted from the live for qRT-PCR. The expression levels of hsp70 and $hsp90{\alpha}$ were higher in WL subjected to stress with high stocking density compared with those genes in control (P<0.05), while the expressions of genes were not affected in KNC. ER stress marker gene XBP1 was also highly expressed in WL with stress (P<0.05), but the stress of high stocking density did not influence to ER stress marker genes in KNC. Lipid metabolism associated genes including FABP4, FATP1 and ACSL1 were highly expressed in WL compared with KNC when subjected to high stocking density stress (P<0.05). The expression of glucose transport gene GLUT2 and GLUT8 were increased in chickens exposured to the stress of high stocking density (P<0.05). The data indicate that WL is more sensitive to the stress of high stocking density compared with KNC and the stress may influence the modulation of lipid and glucose metabolism in the liver of chickens.

Effects of Coenzyme Q10 on the Expression of Genes involved in Lipid Metabolism in Laying Hens (Coenzyme Q10 첨가 급여가 산란계의 지방대사 연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.43 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • The aim of this study was to investigate the expression patterns of key genes involved in lipid metabolism in response to dietary Coenzyme Q10 (CoQ10) in hens. A total of 36 forty week-old Lohmann Brown were randomly allocated into 3 groups consisting of 4 replicates of 3 birds. Laying hens were subjected to one of following treatments: Control (BD, basal diet), T1 (BD+ CoQ10 100 mg/kg diet) and T2 (BD+ micellar of CoQ10 100 mg/kg diet). Birds were fed ad libitum a basal diet or the basal diet supplemented with CoQ10 for 5 weeks. Total RNA was extracted from the liver for quantitative RT-PCR. The mRNA levels of HMG-CoA reductase(HMGCR) and sterol regulatory element-binding proteins(SREBP)2 were decreased more than 30~50% in the liver of birds fed a basal diet supplemented with CoQ10 (p<0.05). These findings suggest that dietary CoQ10 can reduce cholesterol levels by the suppression of the hepatic HMGCR and SREBP2 genes. The gene expressions of liver X receptor (LXR) and SREBP1 were down regulated due to the addition of CoQ10 to the feed (p<0.05). The homeostasis of cholesterol can be regulated by LXR and SREBP1 in cholesterol-low-conditions. The supplement of CoQ10 caused a decreased expression of lipid metabolism-related genes including $PPAR{\gamma}$, XBP1, FASN, and GLUTs in the liver of birds (p<0.05). These data suggest that CoQ10 might be used as a dietary supplement to reduce cholesterol levels and to regulate lipid homeostasis in laying hens.

Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells

  • Xiong, Wei;Jiang, Yong-Xin;Ai, Yi-Qin;Liu, Shan;Wu, Xing-Rao;Cui, Jian-Guo;Qin, Ji-Yong;Liu, Yan;Xia, Yao-Xiong;Ju, Yun-He;He, Wen-Jie;Wang, Yong;Li, Yun-Fen;Hou, Yu;Wang, Li;Li, Wen-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3395-3402
    • /
    • 2015
  • Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.