• Title/Summary/Keyword: RDA%

Search Result 11,877, Processing Time 0.033 seconds

Blending effect of Campbell Early and aronia wines fermented by the mixed culture of Pichia anomala JK04 and Saccharomyces cerevisiae Fermivin (Pichia anomala JK04와 Saccharomyces cerevisiae Fermivin 혼합발효에 의한 캠벨얼리 와인과 아로니아 와인의 블렌딩 효과)

  • Jeong, Hyo-sung;Lee, Sae-Byuk;Yeo, Su-bin;Kim, Da-Hye;Choi, Jun-Su;Kim, Dong-Hwan;Yeo, Soo-Hwan;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.472-482
    • /
    • 2017
  • To improve functionality and palatability of Korean Campbell Early wine. Campbell Early and aronia were fermented by either individually or at 5:5 (v/v) mixed culture of Saccharomyces cerevisiae Fermivin and Pichia anomala JK04. Blending was carried out using those two wines with different mixing ratio. Antioxidant activity analysis and sensory evaluation of blending wines were conducted. The Campbell Early wine and aronia wine blended with 9:1 (v/v) ratio showed excellent antioxidant activity and sensory scores. Total anthocyanin compound, DPPH radical scavenging activity and total phenolic compound of blending wines were higher than those of Campbell Early wine (control). Hue and intensity values increased in the order of A, B, C and D, E, F depending on P. anomala JK04 use. Anonia wine contributed the increase in a and b values of blending wine. Although blending wines fermented by P. anomala JK04 increased small amounts of aldehyde and acid compound, ester compound, the most important factor for wine aroma was also increased sharply. Adding aronia wine fermented by single culture of P. anomala JK04 (A, D) got higher color, taste, sourness and overall preference scores than other wines in the sensory evaluation. All of blending wines showed higher flavor scores than control did. This research shows a possibility of blending and utilizing non-Saccharomyces yeast for Korean wine industry.

Spatial Variation Analysis of Soil Characteristics and Crop Growth across the Land-partitioned Boundary II. Spatial Variation of Soil Chemical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석연구 II. 토양(土壤) 화학성(化學性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 1989
  • In order to study spatial variability of soil chemical properties across the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs) in the experimental fie ld of the wheat and Barley Research Institute in Suwon, all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil chemical property analysis was made at 225 intersections of 15x 15 grid with 10m interval from three soil depths (0-10cm, 25-35cm, 50-60cm) in the seven patitioned fields. 1. The coefficient of variance (CV) of various chemical properties varied from 5.4 to 72.7%. Soil pH was classified into the low variation group with CV smaller than 10%, while the other chemical properties belonged to the medium variation group with C.V. between 10 and 100% 2. The approximate number of soil samples for the determination of various chemical properties with error smaller than 10% were two for pH, ten for CEC, 15 for exchangeable Ca, 32 for total nitrogen content, 39 for exchangeable Mg, 40 for exchangeable K, 61 for exchangeable Na, 82 for organic matter content, 212 for available phosphate,. 3. Smooth frequency distribution and fractile diagram showed that available phosphate was in log-normal distribution while others were in normal distribution. 4. Serial correlation analysis revaled that the soil chemical properties had spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of chemcial properties measured between the serial grid points in the direction of south to north following land-partitioned boundary showed that the zone of influence showing stationarity ranged from 20 to 50m. In the direction of east to west accross land-partitioned boundary, the autocorrelogram of many chemical properies showed peaks with the periodic interval of 30m, which were similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF

Adjustment of Nitrogen by the Absorbing Patterns of Nutrients of Some Crops and N - Leaching in the Soil (시비보정(施肥補正)을 위(爲)한 작물(作物)의 양분(養分) 흡수(吸收) 양상(樣相)과 토양중(土壤中) 비료성분(肥料成分) 용탈(溶脫)에 관(關)한 연구(硏究))

  • Kim, Moon-Kyu;Chang, Ki-Woon;Woo, In-Shik;Ham, Suon-Kyu;Nam, Yun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 1989
  • Barley, garlic, and soybean were cultivated in the silt loam, sandy loam, and loam, respectively, and the absorbing patterns of N, P, and K during growing of the crops were determined. While, the leaching of N, P, and K applied in the above soils in four levels of topsoil depths and in four leachate levels of excess precipitation was measured through the column. The depths of the soil were devised to 20, 35, 50, and 65cm, and the levels of excess water were classified to each leachate of 20, 40, 60, and 80mm precipitation, and nitrogen, phosphorous, and potassium in each fraction of the leachate were analyzed. By the analyses of the chemical components during growth of the crops, their absorbing patterns of N, P, and K were investigated. The order of N-leachings in the soils was sandy loam > loam > silt loam, and the leaching of $K_2O$ was very similar to N. The leaching of $P_2O_5$ was slight in all kinds of the soils. By the combination of the absorbing patterns of the crops in three kinds of soils and the leaching of the nitrogen in four levels of soil depth and four levels of excess precipitation, the method to replace the nitrogen lost by leaching was presented.

  • PDF

Optimum Fertilization Based on Soil Testing for Chinese Cabbage Cultivation in Plastic Film Houses (시설재배지 토양 검정에 의한 배추의 적정 시비량)

  • Hong, Soon Dal;Kang, Bo Goo;Kim, Jai Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of Chinese cabbage in plastic film house, twenty soils which contain different salts contents were taken from 4 different area of plastic film house cultivation, Youngdong. Boeun county, Cheongweon county, and Cheongju city. The dry weight and the amount of N. P, and K uptakes of Chinese cabbage in the plot of no fertilization were considered as the factors representing the fertility of the soil. And a difference of dry weight and the amounts of N, P, and K uptakes of plants between the plot of fertilization and no fertilization were considered as the factors representing the total effect of fertilizer and fertilizer N, P, and K effects. respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with soil tests in order to find the critical levels and recommended method for optimum fertilization of Chinese cabbage. Chinese cabbage transplanted in two soils, having the electrical conductivity of 9.3 and 15.2 dS/m, were not able to root due to the salts toxicity. The content of inorganic N, the electrical conductivity, and CEC were founded to have significant correlation with the factors of both the soil fertility and fertilizer effects for the cultivation of Chinese cabbage. To determine the weighting degree for the productivity and the fertilizer effects, the standardized partial regression coefficient was analyzed by regression among the factors of fertility, the fertilizer effects, and the soil tests. The coefficient for inorganic N($NH_4-N$ and $NO_3-N$) was obtained as the absolute value of 756-1871 and this value was extremely higher than those of other soil tests which was 0.07-4.11. These results suggested that the content of inorganic N is the best tests for the estimation of the productivity and the fertilizer effects for the cultivation of Chinese cabbage in plastic film house. The critical level of inorganic N($NH_4-N+NO_3-N$) estimated by Cate-Nelson split method for maximum productivity and zero point of fertilizer effect was 220 mg/kg for all the factors of estimation. These results suggested that no application of fertilizer N. P, and K is required at the critical level of inorganic N of soil. Consequently the optimum application of fertilizer N, P, and K for the cultivation of Chinese cabbage in plastic film house was possible to determine by the critical level of inorganic N of soil. The critical level of electrical conductivity was estimated as 2.8 dS/m by the same method.

  • PDF

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Nutrient Solute Transport during the Course of Freezing and Thawing of Soils in Korea (동결(凍結)과 해빙(解氷) 기간(期間)중 토양내(土壤內) 양분(養分) 용질(溶質)의 이동(移動))

  • Ha, Sng-Keun;Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.135-144
    • /
    • 1995
  • Understanding on nutrient solute movement during the course of freezing and thawing was attempted through laboratory and field obsevations. Small sectioned tubes with 5cm inner diameter, 0.2cm thick and 1cm long were connected to 30cm long soil columns for laboratory study. The columns were filled with soil, and treated with 20mmol/kg $KNO_3$ for upper 5cm. The upper end was set in the freezing section, and the lower end was set in the refrigerating section of a refrigerator. Temperature was controlled at $-7({\pm}1)^{\circ}C$ and $1.5({\pm}1)^{\circ}C$, respectively. After top 5cm soil was frozen, the columns were sectioned, and analyzed for $NO_3^-$, $NH_4^+$ and $K^+$. For field study, the 20cm inner diameter and lm long soil columns were installed in Chuncheon and Daegwanryung, where the altitude was 74m and 840m, respectively. The soils used were silt loam and clay loam. The top 20cm soils were treated with 50mmol/kg as $KNO_3$. The soil columns were taken during winter freezing and after thawing. By laboratiry study, upward movement of $NO_3^-$ and $K^+$ during the course of freezing was confirmed. The upward movement of $K^+$ was, however, one fifth to one tenth of $NO_3^-$. The upward movement of inorganic nitrogen as well as laboratory during the course of freezing, but large amount of nitrogen was lost from the profile after thawing in early spring. Leached nitrogen from the upper 20cm to lower part was 17 to 24 percents. The maximum depth of leaching during the experiment was 50cm for all soils. The net loss of inorganic nitrogen from the whole profile ranged 8.7 to 39.5 percents. The net loss was greater in Daegwanryung where temperature was lower and snowfall was larger than Chuncheon, and the loss was greater from the silt loam soil than clay loam soil of which percolation rate was small. The results implied that reasons for nitrogen loss during the winter might include surface washing by snow melt as well as leaching and denitrification.

  • PDF

Estimation of Nitrogen Uptake and Biomass of Rice (Oryza sativa L.) Using Ground-based Remote Sensing Techniques (지상 원격측정 센서를 활용한 벼의 생체량과 질소 흡수량 추정)

  • Gong, Hyo-Young;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.779-787
    • /
    • 2011
  • This study was conducted to evaluate the usefulness of ground-based remote sensing for the estimation of rice yield and application rate of N-fertilizer during growing season. Dongjin-1, Korean cultivar of rice was planted on May 30, 2006 and harvested on October 9, 2006. Chlorophyll content and LAI (leaf area index) were measured using Minolta SPAD-502 and AccuPAR model LP-80, respectively. Reflectance indices were determined with passive sensors using sunlight and four types of active sensors using modulated light, respectively. Reflectance indices and growth rate were measured three times from 29 days to 87 days after rice plating and at harvesting day. The result showed that values of growing characteristics and reflectance indices were highly correlated. Growing characteristics to show significant correlation with reflectance indices were in order of followings: fresh weight > N uptake > dry weight > height > No. of tiller > N content. Chlorophyll contents measured by chlorophyll meter (SPAD 502) showed high correlation with nitrogen concentration (r=$0.743^{**}$), although the correlation coefficients between remote sensing data and nitrogen concentration were higher. LAI was highly correlated with dry weight (r=$0.931^{**}$), but relationship between LAI and nitrogen concentration (r=$0.505^*$) was relatively low. The data of CC-passive sensor were negatively correlated with those of the near-infrared. NDVI correlation coefficients found more useful to identify the growth characteristics rather than data from single wavelength. Both passive sensor and active sensor were highly significantly correlated with growth characteristics. Consequently, quantifying the growth characteristics using reflectance indices of ground-based remote sensing could be a useful tool to determine the application rate of N fertilizer non-destructively and in real-time.

Impacts of Topography on Microbial Community from Upland Soils in Gyeongnam Province (경남지역 밭 토양 지형이 미생물 군집에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.485-491
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) in upland soils at 25 sites in Gyeongnam Province. The total bacteria content was $143nmol\;g^{-1}$ for in inclined piedmont, $75nmol\;g^{-1}$ for fan and valley, $49nmol\;g^{-1}$ for hill areas, and $44nmol\;g^{-1}$ for riversider plain. The fungi content was 2.4 times higher in sandy loam than $21nmol\;g^{-1}$ in silt loam (p<0.01). In addition, inclined piedmont soils had a significantly higher ratio of monounsaturated fatty acids to saturated fatty acids compared with fan and valley soils (p<0.05). The communities of total bacteria and arbuscular mycorrhizal fungi in the inclined piedmont soils were significantly higher than those in the fan and valley soils and in the riversider plain soils (p<0.05), whereas the community of fungi was significantly lower (p<0.05). In principal component analyses of soil microbial communities, our findings showed that inclined piedmont was positive relationship with total bacteria and actinomycetes in upland soils.

Effect of Swine Liquid Manure on Soil Chemical Properties and Growth of Rice (Oryza sativa L.) (양돈분뇨 발효액비 시용이 토양 화학성과 벼 (Oryza sativa L.) 생육에 미치는 영향)

  • Lee, Kyu-Hoi;Yoo, Jae-Hong;Park, Eun-Ju;Jung, Yeong-In;Tipayno, S.C.;Shagol, C.C.;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.945-953
    • /
    • 2010
  • This study was conducted to evaluate the effect of swine liquid manure (SLM) on rice grown in Yeonggwang-gun in 2008. The treatments consisted of SLM and chemical fertilizer (CF) based on the recommended amount of nitrogen (11 kg N $10a^{-1}$). The Total N content of the SLM used was 2,881 mg $L^{-1}$. Plant height at the early stage of growth and tiller number were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in all areas. Plant height at the later stage of growth, lodging and yield were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in three areas (Baeksu, Gunnam, Beopseong). Plant height at the later stage of growth, as well as lodging were higher in SLM plots than in chemically fertilized plots in Yeonggwang and Yeomsan. However, grain yield was lower in SLM plots than in chemically fertilized plots in these areas. Soil organic matter content and exchangeable cations increased in the swine liquid manure applied plots. Moreover, heavy metal content did not increase in the plots treated with swine liquid manure. Further research to determine the suitable rate of swine liquid manure is needed to reduce lodging damage and to increase the yield and quality of rice.

Breeding of new variety Pleurotus pulmonarius using protoplast fusion technique (원형질체융합 기법을 이용한 산느타리 계통육성)

  • Gwon, Hee-Min;Lee, Yun-Hae;Kim, Jeong-Han;Baek, Il-Sun;Kang, Hee-Wan;Choi, Jong-In
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.166-175
    • /
    • 2021
  • In this study, monokaryons of "Heukari" (Pleurotus ostreatus) and "Hosan" (Pleurotus pulmonarius) were separated to remove the cell wall, and a cross-species protoplast fusion was developed through chemical treatment with polyethylene glycol. The protoplast-fused PF160306 and PF160313 strains have a culture period of 10 and 2 days shorter than that of the "Heuktari" and "Hosan" cultivars, respectively. Furthermore, the growth of the strains was faster than that of the existing cultivars. The yield was 135.9 g per bottle, which was approximately 8% higher than that of the commercially available "Hosan" cultivar; however, it was not statistically significant. A growth survey was conducted after treatment at five temperatures (15, 18, 21, 23, and 25℃). The growth of the strains accelerated with the increase in temperature. However, at 21℃, the yellow color of pileus was the brightest. Band pattern, assessed using URP Primer 7, was similar to that of the "Hosan" cultivar. The DPPH radical scavenging capacity and polyphenol content were 62.5% and 43.5 mg/mL, respectively, for "Sunjung" and 65.7% and 49.9 mg/mL, respectively, for PF160313. Furthermore, the antihypertensive activities of the "Sunjung" cultivar and PF160313 were similarly high at 74% and 75%, respectively. In conclusion, cross-species hybridization via the protoplast fusion technique can be used for obtaining primary data for mushroom breeding to develop new varieties. In addition, the protoplast fusion technique might aid in expanding the market for yellow mushrooms.