• Title/Summary/Keyword: RCP scenario

Search Result 264, Processing Time 0.027 seconds

Impact of Climate Change on Yield Loss Caused by Bacterial Canker on Kiwifruit in Korea (기후변화 시나리오에 따른 미래 참다래 궤양병 피해 예측)

  • Do, Ki Seok;Chung, Bong Nam;Choi, Kyung San;Ahn, Jeong Joon;Joa, Jae Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.65-73
    • /
    • 2016
  • We estimated the averaged maximum incidences of bacterial canker at suitable sites for kiwifruit cultivation in 2020s and 2050s using D-PSA-K model with RCP4.5 and RCP8.5 climate change scenarios. Though there was a little difference between the estimation using RCP4.5 and that using RCP8.5, the estimated maximum disease incidences were more than 75% at all the suitable sites in Korea except for some southern coastal areas and Jeju island under the assumption that there are a plenty of infections to cause the symptoms. We also analyzed the intermediate and final outputs of D-PSA-K model to find out the trends on the change in disease incidence affected by climate change. Whereas increase of damage to kiwifruit canes in a non-frozen environment caused by bacterial canker was estimated at almost all the suitable sites in both the climate change scenarios, rate of necrosis increase caused by the bacterial canker pathogen in a frozen environment during the last overwintering season was predicted to be reduced at almost all the suitable sites in both the climate change scenarios. Directions of change in estimated maximum incidence varied with sites and scenarios. Whereas the maximum disease incidence at 3.14% of suitable sites for kiwifruit cultivation in 2020s under RCP4.5 scenario was estimated to increase by 10% or more in 2050s, the maximum disease incidence at 25.41% of the suitable sites under RCP8.5 scenario was estimated so.

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios (RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석)

  • Bang, Jehong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

Prospect of Climate Changes for the Mid and Late 21st Century Using RegCM4.0 over CORDEX II East Asian Region (RegCM4.0을 활용한 CORDEX II 동아시아 지역의 21C 중·후반 기후 변화 전망)

  • Kim, Tae-Jun;Suh, Myoung-Seok;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.165-181
    • /
    • 2019
  • In this study, the regional climate model, RegCM4.0 (25 km), with the HadGEM2-AO data as boundary conditions, was used to simulate the mean climate changes in the mid and late 21st century for CORDEX Phase 2 East Asian region. 122 years (1979~2100) of simulation were performed, and RCP 4.5 and RCP 8.5 were used for the simulation of future climate. In the mid-21st century, the temperature is expected to increase by about 0.5 to $3.0^{\circ}C$ in all regions of East Asia, regardless of season and scenario. The increase in temperature is greater in summer and winter, especially in the northern part of simulation domain. Interannual variability (IAV) is expected to decrease by 25% in summer for RCP 8.5, while it is expected to increase by more than 30% in autumn for both scenarios. Regardless of the scenario, the precipitation in South Korea is expected to increase in late June but decrease in mid-July, with an increase in precipitation greater than $100mm\;day^{-1}$. In RCP 4.5 of the late 21st century, relatively uniform temperature increase ($1.0{\sim}2.5^{\circ}C$) is expected throughout the continent, while RCP 8.5 shows a very diverse increase ($3.0{\sim}6.0^{\circ}C$) depending on season and geographical location. In addition, the IAV of temperature is expected to decrease by more than 35% in both scenarios in the summer. In most of the Northwest Pacific region, precipitation is expected to decrease in all seasons except for the summer, but in South Korea, it is projected to increase by about 10% in all seasons except autumn.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Uncertainty Analysis of Future Design Floods for the Yongdang Reservoir Watershed using Bootstrap Technique (Bootstrap 기법을 이용한 용당 저수지 유역의 미래 설계홍수량 불확실성 평가)

  • Lee, Do Gil;Kang, Moon Seong;Park, Jihoon;Ryu, Jeong Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • To estimate design floods for hydraulic structures, statistical methods has been used in the analysis of rainfall data. However, due to the lack of rainfall data in some regions, it is difficult to apply the statistical methods for estimation of design rainfall. In addition, increased uncertainty of design rainfall arising from the limited rainfall data can become an important factor for determining the design floods. The main objective of this study was to assess the uncertainty of the future design floods under RCP (representative concentration pathways) scenarios using a bootstrap technique. The technique was used in this study to quantify the uncertainty in the estimation of the future design floods. The Yongdang watershed in South Korea, 2,873 ha in size, was selected as the study area. The study results showed that the standard errors of the basin of Yongdang reservoir were calculated as 2.0~6.9 % of probable rainfall. The standard errors of RCP4.5 scenario were higher than the standard errors of RCP8.5 scenario. As the results of estimation of design flood, the ranges of peak flows considered uncertainty were 2.3~7.1 %, and were different each duration and scenario. This study might be expected to be used as one of guidelines to consider when designing hydraulic structures.

Monthly Changes in Temperature Extremes over South Korea Based on Observations and RCP8.5 Scenario (관측 자료와 RCP8.5 시나리오를 이용한 우리나라 극한기온의 월별 변화)

  • Kim, Jin-Uk;Kwon, Won-Tae;Byun, Young-Hwa
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.61-72
    • /
    • 2015
  • In this study, we have investigated monthly changes in temperature extremes in South Korea for the past (1921~2010) and the future (2011~2100). We used seven stations' (Gangneung, Seoul, Incheon, Daegu, Jeonju, Busan, Mokpo) data from KMA (Korea Meteorological Administration) for the past. For the future we used the closest grid point values to observations from the RCP8.5 scenario of 1 km resolution. The Expert Team on Climate Change Detection and Indices (ETCCDI)'s climate extreme indices were employed to quantify the characteristics of temperature extremes change. Temperature extreme indices in summer have increased while those in winter have decreased in the past. The extreme indices are expected to change more rapidly in the future than in the past. The number of frost days (FD) is projected to decrease in the future, and the occurrence period will be shortened by two months at the end of the $21^{st}$ century (2071~2100) compared to the present (1981~2010). The number of hot days (HD) is projected to increase in the future, and the occurrence period is projected to lengthen by two months at the end of the $21^{st}$ century compared to the present. The annual highest temperature and its fluctuation is expected to increase. Accordingly, the heat damage is also expected to increase. The result of this study can be used as an information on damage prevention measures due to temperature extreme events.

Projection of Paddy Rice Consumptive Use in the Major Plains of the Korean Peninsula under the RCP Scenarios (대표농도경로 시나리오에 의한 한반도 주요 평야지역 논벼 소비수량 추정)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The paddy rice consumptive use in the six plains of the Korean peninsula was projected with changing climate under the representative concentration pathway (RCP) scenarios. High resolution climate data for the baseline (1961-1990) was obtained from the International water management institute (IWMI) and future high resolution climate projection was obtained from the Korea Meteorological Administration. Reference evapotranspiration (ET) was calculated by using Hargreaves equation. The results of this study showed that the average annual mean temperature would increase persistently in the future. Temperatures were projected to increase more in RCP8.5 than those in RCP4.5 scenario. The rice consumptive use during the growing period was projected to increase slightly in the 2020s and then more significantly in the 2050s and 2080s. It showed higher values for RCP8.5 than for RCP4.5. The rice consumptive use after transplanting in the study areas would increase by 2.2 %, 5.1 % and 7.2 % for RCP4.5 and 3.0 %, 7.6 %, and 13.3 % for RCP8.5, in the 2020s, 2050s, and 2080s, respectively, from the baseline value of 534 mm. The results demonstrated the effects of climate change on rice consumptive use quite well, and can be used in the future agricultural water planning in the Korean peninsula.

Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble (기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Minwook;Kim, Jin Ho;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.47-62
    • /
    • 2020
  • Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

A Study on the Management Method of Agricultural reservoir Using RCP Scenario (RCP 시나리오 분석을 통한 농업용 저수지 관리방안에 관한 연구)

  • Choo, Yeon Moon;Won, Chang Hee;Kim, Seong Ryul;Gwon, Chang Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • A reservoir is defined as an artificial facility that stores and controls water during floods and droughts. Korea has constructed and managed reservoirs all over the country to benefit farming communities. The importance of reservoirs has decreased gradually due to urbanization and the spread of tap water, but the importance of water is increasing because of the recent shortage of water and the resulting rise in the price of water resources. Therefore, this study suggests countermeasures through an analysis of the used threshold for agricultural reservoirs. To this end, the forecast of rainfall up to 2100 was first analyzed using flood estimates and RCP scenarios through rainwater data collection. The increase in the RCP 8.5 scenario, the largest increase in the probability rainfall, was calculated by adding it to the current probability rainfall, and it was predicted that the marginal height of Odong Dam would reach its limit in 2028. Therefore, as a countermeasure against this, the measures to secure effective water storage were suggested through measures, such as lowering the height of Yeosu and installing movable beams. Overall, it is expected that effective management of the reservoirs used for agriculture will be possible in the future.