• 제목/요약/키워드: RC tension member

검색결과 27건 처리시간 0.029초

철근콘크리트 인장부재의 인장강성 및 파괴거동에 관한 연구 (Failure Behavior and Tension Stiffening of RC Tension Members)

  • 박제선;이봉학;윤경구;홍창우;이주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.737-742
    • /
    • 1998
  • The tension stiffening effect is defined as the increase in stiffness in reinforced concrete member due to the stiffness provided by concrete between cracks. If this is disregarded in analysis of reinforced concrete members, especially at the level of service loads, member stiffnesses may be underestimated considerably. This paper presents on the failure behavior and tension stiffening of RC tension test with main variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship by ACI code and the proposed by Collins & Mitchell. In summary, the effect of tension stiffening decrease rapidly as the rebar diameter increase, rebar strength increase, and concrete strength increase. The effect of tension stiffening on RC member is the biggest near the behavior of concrete cracking and decrease as the load close to the breaking point. Thus, the tension stiffening should be considered for the precise analysis near the load of concrete cracking.

  • PDF

철근콘크리트 인장부재의 인장강성에 관한 실험적 연구 (Experimental Study on Tension Stiffening of RC Tension Members)

  • 이봉학;윤경구;장동일
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.120-129
    • /
    • 1998
  • The tension stiffening in reinforced concrete member means increase of stiffness caused by the effective tensile stress between cracks and the tension softening behavior of concrete. This paper presents on the tensile behavior and tension stiffening of RC tension members. Direct tension tests were performed with a main experimental variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship and was compared with ACI code, CEB model and the proposed by Collins & Mitchell. The results are as follows : The tension behaviors of RC members were quite different from those of bare bar and were characterized by loading and concrete cracking steps. The effect of tension stiffening decreased rapidly as the rebar diameter and strength increased, and the concrete strength increased. The proposed by Collins & Mitchell described well the experimental results, regardless of rebar types and concrete. But, ACI code and CEB model described a little differently, depending on the types. The effect of tension stiffening in RC member was the biggest near at concrete cracking step and decreased gradually to the bare bar's behavior as loading closed to the breaking point. Thus, tension stiffening in RC members should be taken into account when the load-deflection characteristics of a member are required or a precise analysis near the load of concrete clacking is needed.

  • PDF

Curvature-based analysis of concrete beams reinforced with steel bars and fibres

  • Kaklauskas, Gintaris;Sokolov, Aleksandr;Shakeri, Ashkan;Ng, Pui-Lam;Barros, Joaquim A.O.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.349-365
    • /
    • 2022
  • Steel fibre-reinforced concrete (SFRC) is an emerging class of composite for construction. However, a reliable method to assess the flexural behaviour of SFRC structural member is in lack. An analytical technique is proposed for determining the moment-curvature response of concrete beams reinforced with steel fibres and longitudinal bars (R/SFRC members). The behaviour of the tensile zone of such members is highly complex due to the interaction between the residual (tension softening) stresses of SFRC and the tension stiffening stresses. The current study suggests a transparent and mechanically sound method to combine these two stress concepts. Tension stiffening is modelled by the reinforcement-related approach assuming that the corresponding stresses act in the area of tensile reinforcement. The effect is quantified based on the analogy between the R/SFRC member and the equivalent RC member having identical geometry and materials except fibres. It is assumed that the resultant tension stiffening force for the R/SFRC member can be calculated as for the equivalent RC member providing that the reinforcement strain in the cracked section of these members is the same. The resultant tension stiffening force can be defined from the moment-curvature relation of the equivalent RC member using an inverse technique. The residual stress is calculated using an existing model that eliminates the need for dedicated mechanical testing. The proposed analytical technique was validated against test data of R/SFRC beams and slabs.

철근콘크리트 벽체의 초기 균열 거동에 대한 연구 (Estimation of Early-Age Cracking of Reinforced Concrete Walls)

  • 곽효경;하수준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.898-905
    • /
    • 2006
  • In the present paper, for a quantitative assessment of early-age cracking in an RC wall, an improved analytical model is proposed. First of all, a three-dimensional finite element model for the analysis of stresses due to hydration heat and differential drying shrinkage is introduced. A discrete steel element derived using the equivalent nodal force concept is used to simulate reinforcing steels, embedded in a concrete matrix. In advance, to quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is proposed Subsequent comparisons. of analytical results with test results verify that the combined use of both the finite element model for the stress analysis as well as the analytical model for the estimation of the post-cracking behavior in an RC tension member make it possible to accurately predict the cracking ,behavior of RC walls.

  • PDF

다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석 (Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function)

  • 곽효경;송종영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

철근 콘크리트 부재의 인장강성 효과에 관한 연구 (Tension Stiffening Effect for Reinforced Concrete Members)

  • 이봉학;윤경구;홍창우
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.83-93
    • /
    • 1999
  • This paper presents tension stiffening effect of Reinforced concrete members obtained from experimental results on direct tension and bending. From the direct tension test program, crack patterns were investigated with tension softening behaviors of concrete. Tension stiffening effects and losses of strain energy were, also, analyzed from the load-deflection curve with the main experimental variables such as concrete strength, yielding stress and reinforcement ratio of rebar. Tension stiffening effect of RC members increase linearly until the first crack initiate, decrease inversely with number of cracks, and then decrease rapidly when splitting cracks are happened. The tension stiffening effect is shown to be more important at the member of lower reinforcement than that of higher. Therefore, it necessitates to consider the tension stiffening effects at a nonlinear analysis. From the above analysis, a tension stiffening model of concrete is proposed and verified by applying it to bending members. From the numerical analysis by finite element approach, it is shown that the proposed model evaluates a little higher in analyzing at nonlinear region of high strength concrete, but, perform satisfactorily in general.

Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios

  • Lee, Jong-Han;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.117-126
    • /
    • 2019
  • When designing reinforced concrete (RC) members, the rebar is assumed to resist all tensile forces, but the resistance of the concrete in the tension area is neglected. However, concrete can also resist tensile forces and increase the tensile stiffness of RC members, which is called the tension stiffening effect (TSE). Therefore, this study assessed the TSE, particularly after yielding of the steel bars and the effects of the steel ratio on the TSE. For this purpose, RC member specimens with steel ratios of 2.87%, 0.99%, and 0.59% were fabricated for uniaxial tensile tests. A vision-based non-contact measurement system was used to measure the behavior of the specimens. The cracks on the specimen at the stabilized cracking stage and the fracture stage were measured with the image analysis method. The results show that the number of cracks increases as the steel ratio increases. The reductions of the limit state and fracture strains were dependent on the ratio of the rebar. As the steel ratio decreased, the strain after yielding of the RC members significantly decreased. Therefore, the overall ductility of the RC member is reduced with decreasing steel ratio. The yielding plateau and ultimate load of the RC members obtained from the proposed equations showed very good agreement with those of the experiments. Finally, the image analysis method was possible to allow flexibility in expand the measurement points and targets to determine the strains and crack widths of the specimens.

다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열 해석 (Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function)

  • 곽효경;송종영;김한수
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.69-84
    • /
    • 2002
  • 본 논문에서는 축방향 인장 부재의 균열거동과 철근콘크리트 부재의 인장강화현상을 고려하기 위한 새로운 해석적 기법을 제시하였다 균열 후 거동 규명을 위하여 부착응력-슬립의 관계나 부탁 응력의 분포를 가정하는 기존의 해석방법과는 달리, 철근과 콘크리트의 변형률 분포 함수를 다항식으로 가정하여, 이를 바탕으로 일축 인장부재의 균열 해석 기법을 구성하였다. 제시한 균열 해석모델은 기존의 해석기법과 비교하여, 철근콘크리트 구조물의 유한요소해석을 위한 균열 후의 평균 응력-변형률 관계를 정의하거나, 부재의 길이방향으로 철근과 콘크리트가 분담하는 하중 및 슬립량 산정시 매우 효율적이다. 제안된 모델을 이용하여 얻어진 균열하중과 보강철근의 신장률 값을 다른 해석기법 및 실험값과 비교한 결과 만족할만한 정확도를 보여주었다.

영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(II): 인장부를 중심으로 (Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(II): Focused on the Tensile Part)

  • 김건수;박기태;우태련
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.47-53
    • /
    • 2022
  • 콘크리트구조물의 한계상태설계법이 적용되면서 구조물의 극한상태까지 고려하는 설계가 이루어지고 있다. 실제 철근콘크리트 부재가 인장력을 부담할 때 부재가 항복한 후에도 극한상태까지 콘크리트가 인장력을 부담한다. 따라서 한계상태 거동에 대한 정확한 평가를 위해서는 휨 부재의 항복 후 인장강화효과에 대한 연구가 필요하다. 본 연구에서는 복철근 직사각형 단면을 가지는 RC 단순보에 대하여 4점 휨 실험을 수행하였고, 영상분석기법을 이용하여 부재의 거동을 상세하게 분석하였다. 분석 결과를 이용하여 휨 인장강화효과 계수를 도입한 항복 후 인장강화효과 추정식을 제안하였고, 이를 기존 연구들의 실험 결과를 통해 적용성을 검증하였다. 부재의 연성거동을 대표하는 극한 변형률과 항복 변형률 차이가 실험 결과와 유사하게 나타나 제안식의 예측이 비교적 정확한 것으로 판단된다.

균열모델을 사용한 철근콘크리트 구조물의 비선형거동 해석에 관한 연구 (A Study on Nonlinear Behavior of RC Structure using Different Crack Models)

  • 김성칠;안영기;박성용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.139-146
    • /
    • 2002
  • A analysis of crack behavior in RC member was performed by nonlinear finite element method. Two crack models were used in F.E.M.(finite element method): one was FCM (the fixed crack model) and the other was RCM (the rotated crack model). Based on parametric study, the ratio of shear steel, strength of concrete, and a/d(shear span/effective depth) were compared with test results of references. According to the test results, when the member behavior was affected by the shear or diagonal tension, RCM was reasonable. However, when the behavior was affected by the flexibility, FCM was more appropriate. In addition, each crack model behavior for the change of shear steel ratio, the increase of strain energy was constant in FCM, but it was different in RCM because of diagonal crack distribution and crack width. Since the strength of concrete is affected not only by shear but also by flexural strength, each crack model behavior yields similar results.