• 제목/요약/키워드: RC structures

검색결과 1,544건 처리시간 0.039초

건축구조물의 슬래브 진동에 의한 사용성 평가 연구 (Evaluation of Serviceability due to Vibration of Slab)

  • 우운택;박태원;정란
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.225-230
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and flexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satisfied to meet the code against vibration.

  • PDF

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.149-166
    • /
    • 2012
  • This paper presents an experimental investigation on the performance of 2.5 m long reinforced concrete (RC) T-beams strengthened in shear using epoxy bonded glass fibre fabric. Eighteen (18) full scale, simply supported RC T-beams are tested. Nine beams are used as control beam specimens with three different stirrups spacing without glass fibre reinforced polymer (GFRP) sheet and rest nine beams are strengthened in shear with one, two, and three layers of GFRP sheet in the form of U-jacket around the web of T-beams for each type of stirrup spacing. The objective of this study is to evaluate the effectiveness, the cracking pattern and modes of failure of the GFRP strengthened RC T-beams. The test result indicates that for RC T-beams strengthened in shear with U-jacketed GFRP sheets, increase the load carrying capacity by 10-46%.

Performance-based earthquake engineering in a lower-seismicity region: South Korea

  • Lee, Han-Seon;Jeong, Ki-Hyun
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.45-65
    • /
    • 2018
  • Over the last three decades, Performance-based Earthquake Engineering (PBEE) has been mainly developed for high seismicity regions. Although information is abundant for PBEE throughout the world, the application of PBEE to lower-seismicity regions, such as those where the magnitude of the maximum considered earthquake (MCE) is less than 6.5, is not always straightforward because some portions of PBEE may not be appropriate for such regions due to geological differences between high- and low-seismicity regions. This paper presents a brief review of state-of-art PBEE methodologies and introduces the seismic hazard of lower-seismicity regions, including those of the Korean Peninsula, with their unique characteristics. With this seismic hazard, representative low-rise RC MRF structures and high-rise RC wall residential structures are evaluated using PBEE. Also, the range of the forces and deformations of the representative building structures under the design earthquake (DE) and the MCE of South Korea are presented. These reviews are used to propose some ideas to improve the practice of state-of-art PBEE in lower-seismicity regions.

균열특성에 따른 콘크리트 구조물의 염분침투에 관한 실험적 연구 (Repid Corrosion Test on Reinforcing Steels in Chloride-Penetrating Concrete Structures with Various Crack Patterns)

  • 이상국;정영수;문홍식;안태송;유환구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.345-350
    • /
    • 2001
  • Reinforced concrete is, in general, known as a high durability material due to a strong alkalinity of cement. Probable concrete cracks could incur steel corrosion of RC structures and then could easily deteriorate the concrete durability, which can be fully secured by a systematic quality control for the construction of concrete structures. For the corrosion protection of reinforcing steels in concrete, however, current design specifications of concrete cover depth do not in-depth consider the effect of the cracks as well as the chloride content of RC structures. Therefore, appropriate provisions for concrete cover depth should be coded by considering the influence of concrete cracks on the corrosion of reinforcing steels. The objective of this research is to investigate pertinent cover depth, which can prohibit rebar corrosion, on the basis of experimental corrosion measurements of reinforcing steels on crack characteristics such as the width, depth and frequency of concrete cracks.

  • PDF

철근 부식 및 피로하중을 고려한 철근 콘크리트 구조물의 피로-부착거동에 관한 실험적 연구 (An Experimental Study for a Fatigue-Bond Behavior of RC Structures Considering a Reinforcement Corrosion and a Fatigue Loading)

  • 정하태;최승원;김세훈;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.274-277
    • /
    • 2006
  • There are many structures attacked by chloride ions near a marine environment. And they are attacked by a salt of de-icing chemicals. So, the embedded reinforcement is corroded. In the same time, these are under a fatigue loading by a traffic loading in bridges. In previous studies, there are many researches that deal with a bond behavior under a monotonic loading according to the rate of a steel corrosion. But there are most cases that the steel corrosion and the repeated loading are acted on structures simultaneously. So, in this study, it is investigated a fatigue-bond behavior of RC structures under a steel corrosion and a fatigue loading. Main variables of the test are a corrosion of steel reinforcement and a level of stress.

  • PDF

Computer Aided Design of RC Structures

  • Islam, S.M. Shahidul;Khennane, A.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.127-133
    • /
    • 2013
  • After reviewing the background and motivations for using modern computational methods for the design of reinforced concrete structures, an algorithm making use of the object oriented programming language Python and professionally developed finite element software is presented for the sizing and placement of the reinforcement in RC structures. The developed method is then used to design the reinforcement of a deep beam. To validate the design, two identical deep beam specimens were manufactured with the obtained steel, and then tested in the laboratory. It was found that the experimental results corroborated those predicted with the finite element design method.

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.