• 제목/요약/키워드: RC slab

검색결과 295건 처리시간 0.025초

건축구조물의 슬래브 진동에 의한 사용성 평가 연구 (Evaluation of Serviceability due to Vibration of Slab)

  • 우운택
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.245-250
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and fiexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However recent high-rise apartment slabs are mostly light and long, the serviceability about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satified to meet the code against vibration.

  • PDF

철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 (Effects of Design on the Dynamic Response of Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

폴리론 화이버를 혼입한 고강도 RC 보 및 슬래브의 내화특성 분석을 위한 Mock-Up 실험 (Mock-Up Test for the Fire Resistance Analysis of High Strength RC Beam and Slab Using the Polylon Fiber)

  • 손호정;황동규;한창평;한민철;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.93-96
    • /
    • 2009
  • The objective of this study is to analyze the insulation characteristics of the polylon hybrid fiber inserted high-strength RC beam and slab produced as a single body and the results of this study can be summarized as follows. In the spalling mechanism as an insulation characteristic, the slab of the single body type specimen shows an exposure in concrete covers at the center of slab and that leads to the spalling, which exposures reinforcing bars. In the case of the beam, the spalling was presented at several sections as a type of peel spalling before and after 10 minutes from the insulation test. Whereas, although the internal temperature history of concrete represents the highest range as 581℃ in the case of the center of the bottom of beam base, it can be considered that it satisfies the regulation of insulation certification.

  • PDF

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도 (One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials)

  • 정주홍;이승창;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.391-398
    • /
    • 2012
  • 이 연구는 도넛형 중공형성체를 사용한 이방향 중공슬래브의 일방향 전단 성능에 관한 연구이다. 최근 건물의 고층화 및 장경간화로 인하여, 다양한 자중 저감형 슬래브 공법에 대한 연구가 진행되고 있다. 이방향 중공슬래브 시스템은 구조성능 저하를 최소화하면서 자중을 효율적으로 줄일 수 있는 시스템으로 알려져 있다. 하지만 기존 연구에 따르면 이방향 중공슬래브는 일반 RC 슬래브에 비해 낮은 전단강도를 가지고 있으며, 이는 중공형상 및 중공형성체 재료에 의해 영향을 받는 것으로 보고되고 있다. 또한 현재의 설계기준은 이방향 중공슬래브의 일방향 전단강도에 대해 명확한 기준을 제시하지 못하고 있다. 도넛형 이방향 중공슬래브의 일방향 전단강도를 확인하기 위하여, 총 4개의 전단강도 실험체를 제작/실험하였다. 그 중 한 개의 실험체는 기준 RC 실험체이고 나머지는 모두 중공슬래브이다. 변수는 도넛형과 비도넛형 두 가지의 중공형상 및 일반 플라스틱과 유리섬유 강화 플라스틱 중공형성체로 설정하였다. 실험 결과, 중공형상과 재료에 따라 이방향 중공슬래브의 전단강도는 차이를 보임을 확인할 수 있었다. 또한 이 결과를 바탕으로 기존의 구형 중공슬래브의 일방향 전단강도 산정시 사용되는 유효단면 산정법의 도넛형 이방향 중공슬래브 적용에 대한 문제점을 도출하였다.

활절점으로 연결된 철근콘크리트 슬래브 내력에 기존 슬래브 철근이 미치는 영향 (Effection of The Existing Reinforcement on The Strength of Reinforced Concrete Slabs Connected by Hinged Jointeds)

  • 심규관;김상식;최광호;임주혁;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.271-274
    • /
    • 2005
  • In this research, 13 RC slabs connected by hinged joints were tested. the new slab was connected to the existing slab by hinge joint injecting dowel bars between two slabs. Main parameters of the slabs were the spacing of the dowel bars (150mm, 300mm, and 450mm) and the locations of the longitudinal reinforcement of the old slab. The test results indicated that the joint strength of the RC test slabs having various types of dowel bars was about twice that calculated by the ACI 318-02 code. The locations of the longitudinal reinforcement of the old slab slightly increased the strength of the slabs connected by hinged joints.

  • PDF

Seismic behavior of RC building by considering a model for shear wall-floor slab connections

  • Soleimani-Abiat, Mehdi;Banan, Mohammad-Reza
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.381-397
    • /
    • 2015
  • Connections are the most important regions in a structural system especially for buildings in seismic zones. In R.C. structures due to large dimensions of members and lack of cognition of the stress distribution in a connection, reaching a comprehensive understanding of the connection behaviors becomes more complicated. The shear wall-to-floor slab connections in lateral load resisting systems have a potential weakness in transferring loads from slabs to shear walls which might change the path of load transformation to shear walls. This paper tries to investigate the effects of seismic load combinations on the behavior of slabs at their connection zones with the shear walls. These connection zones naturally are the most critical regions of the slabs in RC buildings. The investigation carried on in a simulated environment by considering three different structures with different shear wall layout. The final results of our study reveal that layout of shear walls in a building significantly affects the magnification of forces developed at the shear wall-floor slab connections.

Health monitoring of reinforced concrete slabs subjected to earthquake-type dynamic loading via measurement and analysis of acoustic emission signals

  • Gallego, Antolino;Benavent-Climent, Amadeo;Infantes, Cristobal
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.385-398
    • /
    • 2011
  • This paper discusses the applicability of Acoustic Emission (AE) to assess the damage in reinforced concrete (RC) structures subjected to complex dynamic loadings such as those induced by earthquakes. The AE signals recorded during this type of event can be complicated due to the arbitrary and random nature of seismicity and the fact that the signals are highly contaminated by many spurious sources of noise. This paper demonstrates that by properly filtering the AE signals, a very good correlation can be found between AE and damage on the RC structure. The basic experimental data used for this research are the results of fourteen seismic simulations conducted with a shake table on an RC slab supported on four steel columns. The AE signals were recorded by several low-frequency piezoelectric sensors located on the bottom surface of the slab. The evolution of damage under increasing values of peak acceleration applied to the shake table was monitored in terms of AE and dissipated plastic strain energy. A strong correlation was found between the energy dissipated by the concrete through plastic deformations and the AE energy calculated after properly filtering the signals. For this reason, a procedure is proposed to analyze the AE measured in a RC structure during a seismic event so that it can be used for damage assessment.

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

섬유망을 이용한 RC슬래브의 균열제어 (The Crack Control of Fiber Net Reinforced RC Slab)

  • 배주성;김경수;김남욱;김철민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.225-231
    • /
    • 2002
  • Severe cracks on Reinforced Concrete (RC) structures caused by structural displacement can be often one of the main reasons for the degradation of tensile and flexural rigidities of RC structures and for the deterioration of durability and serviceability of RC structures through accelerated steel corrosion. These combined factors adversely affect the performance of RC concrete, leading to shortened life time of RC structures. In consideration of these problems, we conducted 3 point bending experiments by employing three different types of concrete specimens: fiber-net reinforced concrete (FNRC), polypropylene-fiber reinforced concrete (PFRC), and plain concrete (PC). FNRC is well known for its strong corrosion resistance, light self-weight, and excellent tensile strength, while PFRC is known to be effective in crack control. FNRC was found to have the best first and final crack resistances followed by PFRC and PC, as evidenced by the highest initial crack load and the smallest final crack width, respectively. The FNRC specimens with various tensile strength of fiber net exhibited greater ultimate strengths than those for PFRC and PC. Furthermore, the crack widths of FNRC specimens were smaller than those calculated by the crack-width estimation equation of the KCI and ACI code. Therefore, we conclude that fiber net reinforcement is effective not only on crack control, but also on loading share.