• 제목/요약/키워드: RC framed structures

검색결과 38건 처리시간 0.021초

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

Fragility curves of gravity-load designed RC buildings with regularity in plan

  • Masi, A.;Digrisolo, A.;Manfredi, V.
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.1-27
    • /
    • 2015
  • In this paper Fragility Curves (FCs) relevant to existing RC framed building types representative of the Italian building population designed only to vertical load and regular in-plan have been derived from an extensive campaign of non-linear dynamic analyses. In the generation of the FCs, damage states according to the EMS98 scale have been considered while the intensity measure has been defined by adopting an integral parameter, such as the Housner intensity. FCs have been generated by varying different parameters, including building age, number of storeys, presence and position of infill panels, plan dimensions, external beams stiffness and concrete strength. In order to verify the effectiveness of the damage prediction, comparisons were made between the results obtained from the proposed FCs with those deriving from both prominent fragility studies available in the technical literature and damage distributions observed in past earthquakes. Results show that damage grades obtained by adopting the proposed FCs are generally lower than those provided by the other approaches considered. A comparison with real damage data, shows that the proposed FCs generally estimate more severe damage distributions than those observed in past earthquakes, although they give lower differences with respect to the other approaches.

초고층 주상복합아파트 거주자의 주거만족도 (The Residential Satisfaction of Residents in High-rise Mixed-use Apartments)

  • 강순주;이수현
    • 대한가정학회지
    • /
    • 제42권6호
    • /
    • pp.1-12
    • /
    • 2004
  • This study investigates residents' living satisfaction with high-rise, mixed-use apartments built in the structures of reinforced concrete construction(RC) and with steel framed, reinforced concrete construction(SRC). The following study results were obtained: 1) Residents expressed below average satisfaction (below 3.0) with the common-area landscape and environmentally-friendly factors, children's playground and its facilities, community service for residents' by the management offices and utility plan. 2) According to the satisfaction of sound environment, residents of the SRC group expressed above average satisfaction. It can be concluded that noise problems around the residential area of the SRC group was well solved in this study. However, the residents of the SRC group expressed low satisfaction with the freshness of indoor air, humidity, and smell in the living quarters. 3) High-rise, mixed-use apartments should accommodate a familial life cycle, be designed as an environmentally friendly resting place in harmony with city life, and provide various communal programs for residents.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.

중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가 (Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio)

  • 황보진;한상환;박영미
    • 콘크리트학회논문집
    • /
    • 제22권1호
    • /
    • pp.3-10
    • /
    • 2010
  • 이 연구에서는 중력 전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진성능을 평가하였다. 이를 위하여, 이 연구에서는 3층, 7층 골조를 중력하중만 고려하여 설계하고, 대상 건물에 대한 비선형 정적 푸쉬 오버 해석과 비선형 동적 해석을 수행하였다. 그리고 이 연구는 그 비선형 해석에서 중력 전단비의 차이에 따른 뚫림 전단과 파괴 메커니즘을 예측할 수 있도록 제안한 슬래브-기둥 접합부 모델을 사용하였다. 이 연구 결과에 따르면 중력 전단비가 골조의 내진성능에 큰 영향을 미치는 것으로 나타났다. 특히 중력 전단비가 커짐에 따라 골조 접합부의 파괴가 취성적인 파괴를 나타내어 내진 성능이 떨어지는 것으로 나타났다.

계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선 (Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System)

  • 허무원;천영수;이상현;황재승
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권5호
    • /
    • pp.23-30
    • /
    • 2018
  • 최근 들어 건물의 내진 및 내풍 성능을 향상시키기 위하여 감쇠구조에 대한 관심이 높아지고 있다. 감쇠장치 중 저렴한 비용과 높은 에너지소산능력을 발휘하며, 설치와 유지관리가 용이하다는 장점이 있어 강재이력형 감쇠장치를 이용한 수동형 감쇠구조시스템이 널리 사용되고 있다. 본 논문에서는 라멘구조 또는 무량판 구조에 적합한 계단 설치형 카고메 감쇠시스템(SKDS)을 제안하고자 하며, 제안된 감쇠시스템의 지진응답 개선효과에 대하여 해석적으로 검토하고자 한다. 비선형 동적해석결과 최대응답변위, 최대응답가속도 및 밑면전단력 감소로 살펴볼 때 내진구조와 비교하여 더 향상된 거동이 기대된다는 점에서 SKDS의 효과를 확인할 수 있었다.

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.