• Title/Summary/Keyword: RC element

Search Result 682, Processing Time 0.021 seconds

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites (FRP로 전단보강된 철근콘크리트 보의 비선형 해석)

  • Kim, Sang-Woo;Hwang, Hyun-Bok;Lee, Bum-Sik;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.835-838
    • /
    • 2008
  • This study presents the nonlinear finite element analysis to predict the behavior of reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer laminates (FRP). In this paper, modeling concept for the FRP is introduced to enable the use of finite element methods for the shear analysis of RC beams shear-strengthened with FRP composites. The numerical techniques are used to represent the FRP composite, bond properties between the FRP and the concrete, and the RC beams. According to the proposed modeling methods, a finite element analysis is performed using a two-dimensional nonlinear finite element analysis program, VecTor2, based on the Disturbed Stress Field Model (DSFM). To verify the application of the DSFM for the prediction of the behavior of the shear-critical beams strengthened with FRP composites in shear, a detailed comparison between experimental and numerical results for the response of the RC beams is carried out.

  • PDF

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

The effect of finite element modeling assumptions on collapse capacity of an RC frame building

  • Ghaemian, Saeed;Muderrisoglu, Ziya;Yazgan, Ufuk
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.555-565
    • /
    • 2020
  • The main objective of seismic codes is to prevent structural collapse and ensure life safety. Collapse probability of a structure is usually assessed by making a series of analytical model assumptions. This paper investigates the effect of finite element modeling (FEM) assumptions on the estimated collapse capacity of a reinforced concrete (RC) frame building and points out the modeling limitations. Widely used element formulations and hysteresis models are considered in the analysis. A full-scale, three-story RC frame building was utilized as the experimental model. Alternative finite element models are established by adopting a range of different modeling strategies. Using each model, the collapse capacity of the structure is evaluated via Incremental Dynamic Analysis (IDA). Results indicate that the analytically estimated collapse capacities are significantly sensitive to the utilized modeling approaches. Furthermore, results also show that models that represent stiffness degradation lead to a better correlation between the actual and analytical responses. Results of this study are expected to be useful for in developing proper models for assessing the collapse probability of RC frame structures.

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.

Seismic Analysis of RC Subway Station Structures Using Finite Element Method (유한요소법을 이용한 철근콘크리트 지하철 정거장 구조물의 내진 해석)

  • Nam, Sang-Hyeok;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.225-233
    • /
    • 2003
  • Even though a lot of advanced researches on analysis, design, and performance evaluation of reinforced concrete (RC) under seismic action have been carried out, there has been only a few study on seismic analysis of underground RC structures surrounding soil medium. Since the underground RC structures interact with surrounding soil medium, a path-dependent soil model which can predict the soil response is necessary for analyzing behavior of the structure inside soil medium. The behavior of interfacial zone between the RC structure and the surrounding medium should be also considered for more accurate seismic analysis of the RC structure. In this paper, an averaged constitutive model of concrete and reinforcing bars for RC structure and path-dependent Ohsaki's model for soil are applied, and an elasto-plastic interface model having thickness is proposed for seismic analysis of underground RC structures. A finite element analysis technique is developed by applying aforementioned constitutive equations and is verified by predicting both static and dynamic behaviors of RC structures. Then, failure mechanisms of underground RC structure under seismic action are numerically derived through seismic analysis of underground RC station structure under different seismic forces. Finally, the changes of failure mode and the damage level of the structures are also analytically derived for different design cases of underground RC structures.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

A Numerical Study on Flexure Performance of Enhanced Spun RC Pile with Reinforced Joint (원심성형 고성능 RC 말뚝의 이음부 보강에 대한 해석적 연구)

  • Joo, Sanghoon;Hwang, Hoonhee;Bae, Jaehyun;Lee, Jeehoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.70-77
    • /
    • 2018
  • In this study, the reinforced methods of joints were proposed to improve the structural performance of the enhanced spun reinforced concrete piles with joints. To verify the proposed methods, flexure performance was validated by finite element analysis considering both material and contact nonlinearity. Based on the previous study and those results of the analysis, it is concluded that the structural performance of the current joints system for the enhanced spun RC piles can be enhanced by applying the reinforced joints composed of extended circular band plates and studs. This proposed method showed the nearest structural behavior to the enhanced spun RC piles without joints. This numerical study will be used to further experimental study on the enhanced spun RC piles with reinforced joints.

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.