• 제목/요약/키워드: RC cross section

검색결과 186건 처리시간 0.026초

Effective torsional strength of axially restricted RC beams

  • Taborda, Catia S.B.;Bernardo, Luis F.A.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.465-479
    • /
    • 2018
  • In a previous study, design charts where proposed to help the torsional design of axially restricted reinforced concrete (RC) beams with squared cross section. In this article, new design charts are proposed to cover RC beams with rectangular cross section. The influence of the height to width ratio of the cross section on the behavior of RC beams under torsion is firstly shown by using theoretical and experimental results. Next, the effective torsional strength of a reference RC beam is computed for several values and combinations of the study variables, namely: height to width ratio of the cross section, concrete compressive strength, torsional reinforcement ratio and level of the axial restraint. To compute the torsional strength, the modified Variable Angle Truss Model for axially restricted RC beams is used. Then, an extensive parametric analysis based on multivariable and nonlinear correlation analysis is performed to obtain nonlinear regression equations which allow to build the new design charts. These charts allow to correct the torsional strength in order to consider the favourable influence of the compressive axial stress that arises from the axial restraint.

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

Simplified analytical Moment-Curvature relationship for hollow circular RC cross-sections

  • Gentile, Roberto;Raffaele, Domenico
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.419-429
    • /
    • 2018
  • The seismic vulnerability analysis of multi-span bridges can be based on the response of the piers, provided that deck, bearings and foundations remain elastic. The lateral response of an RC bridge pier can be affected by different mechanisms (i.e., flexure, shear, lap-splice or buckling of the longitudinal reinforcement bars, second order effects). In the literature, simplified formulations are available for mechanisms different from the flexure. On the other hand, the flexural response is usually calculated with a numerically-based Moment-Curvature diagram of the base section and equivalent plastic hinge length. The goal of this paper is to propose a simplified analytical solution to obtain the Moment-Curvature relationship for hollow circular RC sections. This based on calibrated polynomials, fitted against a database comprising 720 numerical Moment-Curvature analyses. The section capacity curve is defined through the position of 6 characteristic points and they are based on four input parameters: void ratio of the hollow section, axial force ratio, longitudinal reinforcement ratio, transversal reinforcement ratio. A case study RC bridge pier is assessed with the proposed solution and the results are compared to a refined numerical FEM analysis, showing good match.

표적 관측 위치에 따른 레이더 수신 전력에 관한 연구 (A Study on Radar Received Power based on Target Observing Position)

  • 박태용;이유라
    • 한국정보통신학회논문지
    • /
    • 제18권12호
    • /
    • pp.3063-3068
    • /
    • 2014
  • 표적의 RCS(Radar Cross Section)는 레이더 탐지 성능을 결정하는데 중요한 요소이므로 표적을 효율적으로 탐지하기 위해 RCS가 크게 나타나는 위치에 레이더를 배치하는 것이 유리하다. 그러나 표적의 RCS와 함께 표적과 레이더 간의 거리 또한 레이더에 수신되는 신호의 강도를 결정하는 중요한 요소이다. 본 논문에서는 탄도미사일을 대상으로 동일한 횡축 선상에서 위치를 변경하면서 표적을 관측하였을 때 레이더에 수신되는 전력을 계산하고, 탐지 효율을 높이기 위한 레이더 배치 방안에 대해 연구하였다.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

Slender RC columns strengthened with combined CFRP and steel jacket under axial load

  • Lu, Yi-yan;Li, Na;Li, Shan;Ou, Tian-yan
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1077-1094
    • /
    • 2015
  • This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

복잡한 형태를 갖고 운동중인 금속제물체의 Radar Cross Section (A theoretical calculation and measurements for Radar Cross Section of a moving complex metal target)

  • 진연강;윤현보
    • 대한전자공학회논문지
    • /
    • 제8권6호
    • /
    • pp.33-41
    • /
    • 1971
  • 본 논문은 복잡한 형태를 갖는 운동중의 물체인 소형금속제항공기의 RCS(Radarcrosssection)을 항공기도면에서 간단한 모형으로 가정하여 고정파장의 경우 전면에서 본 RCS를 Relativy phase method와 Random phase nlethod로 그의 이론치를 계산했고, 항공기(cessna 305)를 X 공항을 중심으로 170° 방향으로 비행시키고 11cm 파 Radar로 추적하여 최대탐지거리를 얻어 RCS를 측정한 치와 이론치를 비교한 결과 거의 일치함을 알았다.

  • PDF

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • 제10권2호
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

형상비 4.0인 비내진 철근콘크리트 기둥의 파괴거동 (Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.59-66
    • /
    • 2020
  • 축소모형 팔각형 기둥 실험체 2개를 제작하여 일정한 축력 하에서 반복 횡하중을 가력하는 실험을 수행하였다. 실험체는 중실단면과 중공단면이고 모든 실험체의 횡방향 나선철근 체적비는 0.00206의 값을 갖는다. 실험체들은 휨-전단 파괴거동을 보였다. 본 논문에서는 실험결과에 따른 파괴거동과 내진성능을 분석하였다. 실험결과, 중공 실험체는 초기강성, 초기 균열양상, 에너지 소산능력 등의 구조성능이 중실 실험체와 유사한 거동을 보였으나, 중공 실험체의 경우에는 3% 변위비 이후에 횡력, 극한변위, 에너지소산능력이 현저하게 감소되었다.

단면 내의 부등수분분포를 고려한 SRC 기둥의 장기거동에 관한 연구 (Study on the Long-term Behavior of SRC Columns Considering the Differential Moisture Distribution in a Section)

  • 설현철;김진근;김윤용;권승희;김한수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.109-112
    • /
    • 2004
  • It was found from the previous experimental studies that the long-term deformation of SRC columns was quite different from that of RC columns. A new approach method is needed to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the difference between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of RC columns due to the presence of a flange, which interferes with the moisture diffusion of concrete. This different relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns.

  • PDF