• Title/Summary/Keyword: RC columns

Search Result 634, Processing Time 0.033 seconds

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.

Relationship between Ductility and Confinement Steel of RC Bridge Columns (철근콘크리트 교각의 연성도와 심부구속철근량의 상관관계)

  • 손혁수;한상엽;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • The purpose of this study is to develop a reasonable design for transverse confinement reinforcement considering ductility and required transverse confinement reinforcement of RC bridge columns. In order to develop relationships between the curvature ductility and required transverse confinement reinforcement for design purpose, the analysis using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, an equation for calculating the required transverse confinement reinforcement based on ductility demand was developed for seismic design of RC bridge columns. The equations proposed by this study will provide more reasonable and more effective design guidelines for performance-based seismic design of RC bridge columns.

  • PDF

A Feasibility Study on the Mixed System of RC Columns and Steel Girders (콘크리트 기둥과 철골 보로 이루어진 복합구조의 적용성에 관한 연구)

  • 윤상문;김원태;최광호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.508-514
    • /
    • 1997
  • RCS system consists of RC columns and Steel girders. Because RC columns are useful for compression and steel girders are for bending moment, RCS system has good structural performances. This system, however, has had no verification in the onstruction fields. This paper is a feasibility study on RCS system to verify the structural and economic efficiency of RCS system. On this study, we analyze 18 models selected by existing building data survey, and design these models as steel system,SRC system (Steel + RC system) and RCS system. To verify the economic efficiency of RCS system, we estimate the columns of these models. And we predict the construction procedure of RCS system to compare construction duration of RCS system with others So, in this study we find that RCS system is more economic than steel system and SRC system.

  • PDF

Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression

  • Liang, Hongjun;Jiang, Yanju;Lu, Yiyan;Hu, Jiyue
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • Twenty-two corrosion-damaged columns were simulated through accelerated steel corrosion tests. Eight specimens were directly tested to failure under axial load, and the remaining specimens were tested after concrete-filled steel tube (CFST) strengthening. This study aimed to investigate the damage of RC columns after corrosion and their restoration and enhancement after strengthening. The research parameters included different corrosion degrees of RC columns, diameter-to-thickness ratio of steel tube and the strengthening concrete strength. Experimental results showed that CFST strengthening method could change the failure mode of corrosion-damaged RC columns from brittleness to ductility. In addition to the bearing capacity provided by the strengthening materials, it can also provide an extra 26.7% amplification because of the effective confinement provided by steel tubes. The influence of corrosion on reinforcement and concrete was quantitatively analysed and considered in the design formula. The proposed formula accurately predicted the bearing capacity of the strengthened columns with a maximum error of only 7.68%.

Comparison of displacement capacity of reinforced concrete columns with seismic codes

  • Cansiz, Sinan;Aydemir, Cem;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.295-304
    • /
    • 2019
  • The lateral displacement or drift may be the cause of the damage in the reinforced concrete (RC) columns under the seismic load. In many regulations, lateral displacement was limited according to the properties of columns. The design displacement limits may be represented indirectly through the material strain limits and the mechanical properties of columns. EUROCODE-8 and FEMA356 calculate displacement limits by taking into account the mechanical properties of columns. However, Turkey Building Earthquake Code (TBEC) determine displacement limits by taking into account the material strain limits. The aim of this study is to assess the seismic design codes for RC columns through an experimental study. The estimates of seismic design codes have been compared with the experimental results. It is observed that the lateral displacement capacities of columns estimated according to some seismic codes are not in agreement with the experimental results. Also, it is observed that TBEC is conservative in the context of the performance indicator of RC columns, compared to EUROCODE-8 and FEMA356. Moreover, in this study, plastic hinge length and effective stiffness of test elements were investigated.

Nonlinear Numerical Analysis for Shear Dominant RC Columns Subjected to Lateral Force (전단거동이 우세한 기둥의 비선형 해석에 관한 연구)

  • Kim Ick-Hyun;Sun Chang-Ho;Lee Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.467-476
    • /
    • 2004
  • Because of crack control by steel bars after cracking the material models for reinforced concrete(RC) differ from those for plain concrete(PL). The nonlinear behavior of columns subjected to lateral load was simulated with reasonable accuracy in 3D analysis by applying distinct material models for RC and PL zone subdivided properly on the section. The shear strain is confirmed to develope unstably with ununiform distribution in out-of-plane direction. And this tendency becomes stronger as the thickness of column member increases in out-of-plane direction. If this ununiformity in strain distribution is not taken into consideration the capacity and the deformability of columns in shear dominant failure are overestimated excessively in two dimensional analysis. By introducing equivalent softening model a behavior of columns can be predicted too in two dimensional analysis.

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

Column Shortening of SRC Columns Considering the Differential Moisture Distribution (부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구)

  • Seol, Hyun-Cheol;Kim, Yun-Yong;Kwon, Seung-Hee;Kim, Han-Soo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.29-36
    • /
    • 2006
  • Steel reinforced concrete(SRC) columns, which have been widely employed in high-rise buildings, exhibit a time-dependent behavior because of creep and shrinkage of concrete. This long-term behavior may cause a serious serviceability problem in structural systems, so it is very important to predict the deformation due to creep and shrinkage of concrete. However, it was found from the previous experimental studies that the long-term deformation of SRC columns was quite dissimilar from that of RC columns. A new method is required to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the discrepancy between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of reinforced concrete(RC) columns owing to the presence of a inner steel plate, which interferes with the moisture diffusion of concrete. This relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns. Therefore it is suggested that the differential moisture distribution should be taken into account in order to reasonably predict column shortening of SRC columns.