• 제목/요약/키워드: RC building

검색결과 720건 처리시간 0.028초

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가 (Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes)

  • 신지욱;김준희;이기학
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Structural robustness of RC frame buildings under threat-independent damage scenarios

  • Ventura, Antonio;De Biagi, Valerio;Chiaia, Bernardino
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.689-698
    • /
    • 2018
  • This study focuses on a novel procedure for the robustness assessment of reinforced concrete (RC) framed structures under threat-independent damage scenarios. The procedure is derived from coupled dynamic and non-linear static analyses. Two robustness indicators are defined and the method is applied to two RC frame buildings. The first building was designed for gravity load and earthquake resistance in accordance with Eurocode 8. The second was designed according to the tie force (TF) method, one of the design quantitative procedures for enhancing resistance to progressive collapse. In addition, in order to demonstrate the suitability and applicability of the TF method, the structural robustness and resistance to progressive collapse of the two designs is compared.

건축구조물의 슬래브 진동에 의한 사용성 평가 연구 (Evaluation of Serviceability due to Vibration of Slab)

  • 우운택
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.245-250
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and fiexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However recent high-rise apartment slabs are mostly light and long, the serviceability about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satified to meet the code against vibration.

  • PDF

ELS를 이용한 고층 RC 빌딩의 붕괴해석 및 발파해체해석 기법의 국부손상-연쇄붕괴 전이과정 해석에 응용 (Collapse Simulations of High-Rise RC Building Using ELS Software and Application of Explosive Demolition Methods to Transition Process Analysis from Local Damage to Progressive Collapse)

  • 김현수;박훈;김승곤;이연규;조상호
    • 화약ㆍ발파
    • /
    • 제29권2호
    • /
    • pp.1-12
    • /
    • 2011
  • 외부폭발, 화재, 충돌, 지진, 태풍과 같은 비정상 하중에 의한 고층빌딩의 연쇄붕괴(progressive collapse) 해석에 관련된 많은 연구가 진행되고 있다. 특히 그러나 실규모의 고층건물을 대상으로 한 손상 및 붕괴에 실험은 현실상 불가능한 실정이다. 본 연구에서는 구조물 발파해체분야에서 적용되는 ELS 소프트웨어를 이용하여 외부폭발에 의한 고층 RC 구조물의 국부손상 및 연쇄붕괴시뮬레이션을 수행하였다. 현관으로부터 1m, 2m, 5m, 10m, 15m 이격되어 폭약 1,500kg이 폭발한 것을 가정하여, 이격거리에 따른 국부손상과 이에 따른 연쇄붕괴현상을 파악하였다. 특히 기폭시나리오에 따라 구조물 지지부재의 일부를 제거하여 구조물의 붕괴를 유도하는 발파해체기법을 국부손상-연쇄붕괴 전이과정 연구에 적용하였다.

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.

Development of a user-friendly and transparent non-linear analysis program for RC walls

  • Menegon, Scott J.;Wilson, John L.;Lam, Nelson T.K.;Gad, Emad F.
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.327-341
    • /
    • 2020
  • Advanced forms of structural design (e.g., displacement-based methods) require knowledge of the non-linear force-displacement behavior of both the overall building and individual lateral load resisting elements, i.e., walls or building cores. Similarly, understanding the non-linear behaviour of the elements in a structure can also allow for a less conservative structural response to be calculated by better understanding the cracked (i.e., effective) properties of the various RC elements. Calculating the non-linear response of an RC section typically involves using 'black box' analysis packages, wherein the user may not be in complete control nor be aware of all the intricate settings and/or decisions behind the scenes. This paper introduces a user-friendly and transparent analysis program for predicting the back-bone force displacement behavior of slender (i.e., flexure controlled) RC walls, building cores or columns. The program has been validated and benchmarked theoretically against both commonly available and widely used analysis packages and experimentally against a database of 16 large-scale RC wall test specimens. The program, which is called WHAM, is written using Microsoft Excel spreadsheets to promote transparency and allow users to further develop or modify to suit individual requirements. The program is available free-of-charge and is intended to be used as an educational tool for structural designers, researchers or students.

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri;Swarup K. Barman
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.1-23
    • /
    • 2024
  • Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.

근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계 (Design Optimization of a RC Building Structure using an Approximate Optimization Technique)

  • 박창현;안희재;최동훈;정철규
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.223-233
    • /
    • 2011
  • 본 논문에서는 수직하중, 풍하중 및 지진하중에 의해 발생하는 변위 관련 구속조건을 만족하면서 RC(Reinforced Concrete) 빌딩 구조의 부피를 최소화하기 위한 설계문제를 정식화하였다. 구조해석 절차 자동화의 어려움으로 인해 실험 계획법과 근사화기법, 최적화기법을 이용한 근사모델기반 최적설계를 수행하였다. 특히, 만족할 만한 설계 결과를 얻을 때까지 설계변수의 범위와 구속조건의 허용값을 조정하는 단계적 최적설계 방법을 제안하였다. 제안된 단계적 최적설계 방법을 통해 주어진 구속조건을 모두 만족하면서 RC 빌딩 구조의 부피를 초기 설계 대비 53.3% 감소시키는 결과를 얻음으로 써 본 논문에서 보인 단계적 최적설계 방법의 타당성을 보였다.

Plastic hinge length of RC columns considering soil-structure interaction

  • Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.679-702
    • /
    • 2013
  • During an earthquake, soils filter and send out the shaking to the building and simultaneously it has the role of bearing the building vibrations and transmitting them back to the ground. In other words, the ground and the building interact with each other. Hence, soil-structure interaction (SSI) is a key parameter that affects the performance of buildings during the earthquakes and is worth to be taken into consideration. Columns are one of the most crucial elements in RC buildings that play an important role in stability of the building and must be able to dissipate energy under seismic loads. Recent earthquakes showed that formation of plastic hinges in columns is still possible as a result of strong ground motion, despite the application of strong column-weak beam concept, as recommended by various design codes. Energy is dissipated through the plastic deformation of specific zones at the end of a member without affecting the rest of the structure. The formation of a plastic hinge in an RC column in regions that experience inelastic actions depends on the column details as well as soil-structure interaction (SSI). In this paper, 854 different scenarios have been analyzed by inelastic time-history analyses to predict the nonlinear behavior of RC columns considering soil-structure interaction (SSI). The effects of axial load, height over depth ratio, main period of soil and structure as well as different characteristics of earthquakes, are evaluated analytically by finite element methods and the results are compared with corresponding experimental data. Findings from this study provide a simple expression to estimate plastic hinge length of RC columns including soil-structure interaction.