• Title/Summary/Keyword: RBF neural network

Search Result 177, Processing Time 0.019 seconds

Self-organizing neuro-tracking of non-stationary manufacturing processes

  • Wang, Gi-Nam;Go, Young-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.403-413
    • /
    • 1996
  • Two-phase self-organizing neuro-modeling (SONM). the global SONM and local SONM, is designed for tracking non-stationary manufacturing processes. Radial basis function (RBF) neural network is employed, and self-tuning estimator is also developed for the determination of RBF network parameters on-line. A pattern recognition approach is presented for identifying a correct RBF neural network, which is used for identifying current manufacturing processes. Experimental results showed that the proposed approach is suitable for tracking non-stationary processes.

  • PDF

Reduced RBF Centers Based Multiuser Detection in DS-CDMA System

  • Lee, Jung-Sik;Hwang, Jae-Jeong;Park, Chi-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1085-1091
    • /
    • 2006
  • The major goal of this paper is to develop a practically implemental radial basis function (RBF) neural network based multi-user detector (MUD) for direct sequence (DS)-CDMA system. This work is expected to provide an efficient solution for RBF based MUD by quickly setting up the proper number of RBF centers and their locations required in training. The basic idea in this research is to estimate all the possible RBF centers by using supervised ${\kappa-means$ clustering technique, and select the only centers which locate near seemingly decision boundary between centers, and reduce further by grouping the some of centers adjacent each other. Therefore, it reduces the computational burden for finding the proper number of RBF centers and their locations in the existing RBF based MUD, and ultimately, make its implementation practical.

VAD By Neural Network Under Wireless Communication Systems (Neural Network을 이용한 무선 통신시스템에서의 VAD)

  • Lee Hosun;Kim Sukyung;Park Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1262-1267
    • /
    • 2005
  • Elliptical basis function (EBF) neural network works stably under high-level background noise environment and makes the nonlinear processing possible. It can be adapted real time VAD with simple design. This paper introduces VAD implementation using EBF and the experimental results show that EBF VAD outperforms G729 Annex B and RBF neural networks. The best error rates achieved by the EBF networks were improved more than $70\%$ in speech and $50\%$ in silence while that achieved by G.729 Annex B and RBF networks respectively.

Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper suggests the use of wavelet multiresolution analysis (WMRA) and neural network for generation of artificial earthquake accelerograms from target spectrum. This procedure uses the learning capabilities of radial basis function (RBF) neural network to expand the knowledge of the inverse mapping from response spectrum to earthquake accelerogram. In the first step, WMRA is used to decompose earthquake accelerograms to several levels that each level covers a special range of frequencies, and then for every level a RBF neural network is trained to learn to relate the response spectrum to wavelet coefficients. Finally the generated accelerogram using inverse discrete wavelet transform is obtained. An example is presented to demonstrate the effectiveness of the method.

Face Recognition Based on Improved Fuzzy RBF Neural Network for Smar t Device

  • Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1338-1347
    • /
    • 2013
  • Face recognition is a science of automatically identifying individuals based their unique facial features. In order to avoid overfitting and reduce the computational reduce the computational burden, a new face recognition algorithm using PCA-fisher linear discriminant (PCA-FLD) and fuzzy radial basis function neural network (RBFNN) is proposed in this paper. First, face features are extracted by the principal component analysis (PCA) method. Then, the extracted features are further processed by the Fisher's linear discriminant technique to acquire lower-dimensional discriminant patterns, the processed features will be considered as the input of the fuzzy RBFNN. As a widely applied algorithm in fuzzy RBF neural network, BP learning algorithm has the low rate of convergence, therefore, an improved learning algorithm based on Levenberg-Marquart (L-M) for fuzzy RBF neural network is introduced in this paper, which combined the Gradient Descent algorithm with the Gauss-Newton algorithm. Experimental results on the ORL face database demonstrate that the proposed algorithm has satisfactory performance and high recognition rate.

Artificial neural network reconstructs core power distribution

  • Li, Wenhuai;Ding, Peng;Xia, Wenqing;Chen, Shu;Yu, Fengwan;Duan, Chengjie;Cui, Dawei;Chen, Chen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.617-626
    • /
    • 2022
  • To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in the reactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples for temperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. It is necessary to reconstruct the measurement information of the whole reactor position. However, the reading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize the useful information of various detectors. A comparison of multilayer perceptron (MLP) network and radial basis function (RBF) network is performed. RBF results are more extreme precision but also more sensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localized neural network could offer conservative regression in RBF. Adding random disturbance in training dataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neural networks seem to be helpful to get more accurate results by use more spatial layout information, though relative researches are still under way.

Classification of UTI Using RBF and LVQ Artificial Neural Network in Urine Dipstick Screening Test (RBF와 LVQ 인공신경망을 이용한 요(尿) 딥스틱 선별검사에서의 요로감염 분류)

  • Min, Kyoung-Kee;Kang, Myung-Seo;Shin, Ki-Young;Lee, Sang-Sik;Hun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.340-347
    • /
    • 2008
  • Dipstick urinalysis is used as a routine test for a screening test of UTI (urinary tract infection) in primary practice because urine dipstick test is simple. The result of dipstick urinalysis brings medical professionals to make a microscopic examination and urine culture for exact UTI diagnosis, therefore it is emphasized on a role of screening test. The objective of this study was to the classification between UTI patients and normal subjects using hybrid neural network classifier with enhanced clustering performance in urine dipstick screening test. In order to propose a classifier, we made a hybrid neural network which combines with RBF layer, summation & normalization layer and L VQ artificial neural network layer. For the demonstration of proposed hybrid neural network, we compared proposed classifier with various artificial neural networks such as back-propagation, RBFNN and PNN method. As a result, classification performance of proposed classifier was able to classify 95.81% of the normal subjects and 83.87% of the UTI patients, total average 90.72% according to validation dataset. The proposed classifier confirms better performance than other classifiers. Therefore the application of such a proposed classifier expect to utilize telemedicine to classify between UTI patients and normal subjects in the future.

A Two-Stage Document Page Segmentation Method using Morphological Distance Map and RBF Network (거리 사상 함수 및 RBF 네트워크의 2단계 알고리즘을 적용한 서류 레이아웃 분할 방법)

  • Shin, Hyun-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.547-553
    • /
    • 2008
  • We propose a two-stage document layout segmentation method. At the first stage, as top-down segmentation, morphological distance map algorithm extracts a collection of rectangular regions from a given input image. This preliminary result from the first stage is employed as input parameters for the process of next stage. At the second stage, a machine-learning algorithm is adopted RBF network, one of neural networks based on statistical model, is selected. In order for constructing the hidden layer of RBF network, a data clustering technique bared on the self-organizing property of Kohonen network is utilized. We present a result showing that the supervised neural network, trained by 300 number of sample data, improves the preliminary results of the first stage.

Direct Controller for Nonlinear System Using a Neural Network (신경망을 이용한 비선형 시스템의 직접 제어)

  • Bae, Ceol-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6484-6487
    • /
    • 2013
  • This paper reports the direct controller for nonlinear plants using a neural network. The controller was composed of an approximate controller and a neural network auxiliary controller. The approximate controller provides rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not place too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network was trained and the system showed stable performance for the inputs it has been trained for. The simulation results showed that it was quite effective and could realize satisfactory control of the nonlinear system.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.