• Title/Summary/Keyword: RBF kernel

Search Result 57, Processing Time 0.019 seconds

On the Support Vector Machine with the kernel of the q-normal distribution

  • Joguchi, Hirofumi;Tanaka, Masaru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.983-986
    • /
    • 2002
  • Support Vector Machine (SVM) is one of the methods of pattern recognition that separate input data using hyperplane. This method has high capability of pattern recognition by using the technique, which says kernel trick, and the Radial basis function (RBF) kernel is usually used as a kernel function in kernel trick. In this paper we propose using the q-normal distribution to the kernel function, instead of conventional RBF, and compare two types of the kernel function.

  • PDF

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Performance Analysis of Kernel Function for Support Vector Machine (Support Vector Machine에 대한 커널 함수의 성능 분석)

  • Sim, Woo-Sung;Sung, Se-Young;Cheng, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

Elongated Radial Basis Function for Nonlinear Representation of Face Data

  • Kim, Sang-Ki;Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.428-434
    • /
    • 2011
  • Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results in face recognition. However, due to the endemic small sample size problem of face data, the conventional kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the small sample size issue.

Self-adaptive Online Sequential Learning Radial Basis Function Classifier Using Multi-variable Normal Distribution Function

  • Dong, Keming;Kim, Hyoung-Joong;Suresh, Sundaram
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.382-386
    • /
    • 2009
  • Online or sequential learning is one of the most basic and powerful method to train neuron network, and it has been widely used in disease detection, weather prediction and other realistic classification problem. At present, there are many algorithms in this area, such as MRAN, GAP-RBFN, OS-ELM, SVM and SMC-RBF. Among them, SMC-RBF has the best performance; it has less number of hidden neurons, and best efficiency. However, all the existing algorithms use signal normal distribution as kernel function, which means the output of the kernel function is same at the different direction. In this paper, we use multi-variable normal distribution as kernel function, and derive EKF learning formulas for multi-variable normal distribution kernel function. From the result of the experience, we can deduct that the proposed method has better efficiency performance, and not sensitive to the data sequence.

  • PDF

Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel (분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류)

  • Choi, Jae-Wan;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.71-77
    • /
    • 2006
  • Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.

  • PDF

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

A Study on SVM-Based Speaker Classification Using GMM-supervector (GMM-supervector를 사용한 SVM 기반 화자분류에 대한 연구)

  • Lee, Kyong-Rok
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1022-1027
    • /
    • 2020
  • In this paper, SVM-based speaker classification is experimented with GMM-supervector. To create a speaker cluster, conventional speaker change detection is performed with the KL distance using the SNR-based weighting function. SVM-based speaker classification consists of two steps. In the first step, SVM-based classification between UBM and speaker models is performed, speaker information is indexed in each cluster, and then grouped by speaker. In the second step, the SVM-based classification between UBM and speaker models is performed by inputting the speaker cluster group. Linear and RBF are applied as kernel functions for SVM-based classification. As a result, in the first step, the case of applying the linear kernel showed better performance than RBF with 148 speaker clusters, MDR 0, FAR 47.3, and ER 50.7. The second step experiment result also showed the best performance with 109 speaker clusters, MDR 1.3, FAR 28.4, and ER 32.1 when the linear kernel was applied.