• Title/Summary/Keyword: RBF Neural Networks

Search Result 94, Processing Time 0.03 seconds

A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines (Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델)

  • Lim, Se-Hun
    • Journal of Distribution Research
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2005
  • It is important to control performance and a Sustainable Collaboration (SC) for the successful Supply Chain Management (SCM). This research developed a control model which analyzed SCM performances based on a Balanced Scorecard (ESC) and an SC using Support Vector Machine (SVM). 108 specialists of an SCM completed the questionnaires. We analyzed experimental data set using SVM. This research compared the forecasting accuracy of an SCMSC through four types of SVM kernels: (1) linear, (2) polynomial (3) Radial Basis Function (REF), and (4) sigmoid kernel (linear > RBF > Sigmoid > Polynomial). Then, this study compares the prediction performance of SVM linear kernel with Artificial Neural Network. (ANN). The research findings show that using SVM linear kernel to forecast an SCMSC is the most outstanding. Thus SVM linear kernel provides a promising alternative to an SC control level. A company which pursues an SCM can use the information of an SC in the SVM model.

  • PDF

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.

Design of Real-time Face Recognition Systems Based on Data-Preprocessing and Neuro-Fuzzy Networks for the Improvement of Recognition Rate (인식률 향상을 위한 데이터 전처리와 Neuro-Fuzzy 네트워크 기반의 실시간 얼굴 인식 시스템 설계)

  • Yoo, Sung-Hoon;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1952-1953
    • /
    • 2011
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis function Neural Network)을 설계하고 이를 n-클래스 패턴 분류 문제에 적용한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉층으로 전달하는 기능을 수행하고 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 패턴분류기의 최적화는 PSO(Particle Swarm Optimization)알고리즘을 통해 이루어진다. 그리고 제안된 패턴분류기는 실제 얼굴인식 시스템으로 응용하여 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출, 특징 추출 등과 같은 처리 과정을 포함하여 서로 다른 등록인물의 n-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석해본다.

  • PDF

An Elliptical Basis Function Network for Classification of Remote-Sensing Images

  • Luo, Jian-Cheng;Chen, Qiu-Xiao;Zheng, Jiang;Leung, Yee;Ma, Jiang-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1326-1328
    • /
    • 2003
  • An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.

  • PDF

A Neural Network for Prediction and Sensitivity of Outpatients' Satisfaction (신경망모형을 이용한 외래환자 만족도예측 및 민감도분석)

  • Lee, Kyun-Jick;Chung, Young-Chul;Kim, Mi-Ra
    • Korea Journal of Hospital Management
    • /
    • v.8 no.1
    • /
    • pp.81-94
    • /
    • 2003
  • This paper aims at developing a prediction model and analyzing a sensitivity for the outpatient's overall satisfaction on utilizing hospital services by using data mining techniques within the context of customer satisfaction. From a total of 900 outpatient cases, 80 percent were randomly selected as the training group and the other 20 percent as the validation group. Cases in the training group were used in the development of the CHAID and Neural Networks. The validation group was used to test the performance of these models. The major findings may be summarized as follows: the CHAID provided six useful predictors - satisfaction with treatment level, satisfaction with healthcare facilities and equipments, satisfaction with registration service, awareness of hospital reputation, satisfaction with staffs courtesy and responsiveness, and satisfaction with nurses kindness. The prediction accuracy rates based on MLP (77.90%) is superior to RBF (76.80%).

  • PDF

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

Enhancement of Forecasting Accuracy in Time-Series Data, Basedon Wavelet Transformation and Neural Network Training (Wavelet 변환과 신경망을 이용한 시계열 데이터 예측력의 향상)

  • 신승원;최종욱;노정현
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 1998
  • Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.

  • PDF

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

On the Automatic Classification of Power Quality Disturbances (전력 외란의 자동 식별 알고리즘)

  • Choi, Bong-Joon;Kim, Bong-Soo;Kim, Jin-O;Nam, Sang-Won;Oh, Won-Tcheon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.910-912
    • /
    • 1995
  • This paper proposes an effective algorithm for automatic classification of power quality disturbances(PQD), where wavelet theory is utilized for the detection of PQD, and three neural networks such as MLP, RBF, MLP-Class are combined in parallel to classify PQD. To demonstrate the performance of the proposed system, simulation results are provided.

  • PDF

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Gwang-Baek;Mun, Yong-Eun;Park, Chung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF