• Title/Summary/Keyword: RBF Neural Networks

Search Result 95, Processing Time 0.022 seconds

On a Design of the Nonlinear Direct Adaptive Controller Using Neural Networks (신경망을 이용한 비선형 직접적응제어기 설계에 관한 연구)

  • 이순영;김관수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • 본 논문에서는 비선형 제어시스템의 성능 개선을 위한 새로운 신경망 직접 적응제어 알고리즘을 제시하였다. 제어칙은 Gaussian RBF 신경망을 이용한 제어입력과 근사화 오차 및 외란의 영향을 제거하기 위한 보조제어 입력으로 구성하였다. 또한 신경망에 사용된 가중치와 보조입력의 파라미터를 조정하기 위한 적응칙은 Lyapunov 안정도 이론에 의하여 구하였다. 이렇게 함으로써 외란이나 근사화 오차에 관계없이 플랜트와 기준모델 사이의 오차가 0이 되도록 하는 알고리즘을 구할 수 있었다. 또한 제시된 알고리즘의 효용성을 알아보기 위하여 Duffing forced oscillation 시스템에 대하여 시뮬레이션 하여본 결과 만족할만한 성능을 얻을 수 있었다.

  • PDF

Identifiers Recognition of Container Image using Enhanced Neural Networks (개선된 신경망을 이용한 컨테이너 식별자 인식)

  • Yoon Kyeong-Ho;Jun Tae-Ryong;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.291-296
    • /
    • 2006
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 환경으로 인한 식별자의 형태가 훼손되어 있기 때문에 일정한 규칙으로는 찾기 힘들다. 본 논문에서는 컨테이너 영상에 대해 ART2 알고리즘을 적용하여 컨테이너 영상을 양자화한다. 제안된 ART2 알고리즘 기반 양자화 기법은 컬러정보를 클러스터링 한 후, 각 클러스터의 중심 패턴을 이용하여 원 영상의 컬러정보를 분류한다. 양자화된 컨테이너 영상에서 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자는 ART2 기반 RBF 네트워크를 개선하여 인식에 적용한다. 실제 컨테이너 영상 300장에 대해 실험한 결과, 제안한 컨테이너 식별자 인식 방법의 추출 및 인식 성능이 기존의 컨테이너 식별자 인식 방법 보다 개선된 것을 확인하였다.

  • PDF

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Principal Component Analysis (적응적 성분분석 기법에 의한 RBF 신경망의 성능개선)

  • 조용현;윤중환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.475-477
    • /
    • 2000
  • 본 논문에서는 적응적 성분분석 기법을 이용하여 radial basis 함수 신경망의 학습시간과 분류성능을 개선한 새로운 기법을 제안하였다. 제안된 기법에서 적응적 성분분석 기법은 radial basis 함수 신경망의 은닉층 뉴런 개수와 중심값 설정을 위해 이용하였다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결고, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망과 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다.

  • PDF

Recognition of Passports using Enhanced Neural Networks and Photo Authentication (개선된 신경망과 사진 인증을 이용한 여권 인식)

  • Kim Kwang-Baek;Park Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.983-989
    • /
    • 2006
  • Current emigration and immigration control inspects passports by the naked eye, registers them by manual input, and compares them with items of database. In this paper, we propose the method to recognize information codes of passports. The proposed passport recognition method extracts character-rows of information codes by applying sobel operator, horizontal smearing, and contour tracking algorithm. The extracted letter-row regions is binarized. After a CDM mask is applied to them in order to recover the individual codes, the individual codes are extracted by applying vertical smearing. The recognizing of individual codes is performed by the RBF network whose hidden layer is applied by ART 2 algorithm and whose learning between the hidden layer and the output layer is applied by a generalized delta learning method. After a photo region is extracted from the reference of the starting point of the extracted character-rows of information codes, that region is verified by the information of luminance, edge, and hue. The verified photo region is certified by the classified features by the ART 2 algorithm. The comparing experiment with real passport images confirmed the good performance of the proposed method.

A Design of the Boiler-Turbine Controller Using Neural Adaptive Control Schemes (신경망 적응 제어를 이용한 보일러-터빈 제어시스템 설계)

  • Lee, Sun-Ho;Kim, Gwan-Soo;Lee, Byeng-Gi;Lee, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2455-2457
    • /
    • 2000
  • In this paper, it is proposed a neural adaptve control algorithm for boiler-turbine system. Control inputs are constructed using RBF Neural networks and variable structure inputs are added to improve the robustness. This proposed algorithm does not need the information about parameters and can assure the robustness under the output disturbance and parameter perturbations. The results of computer simulations is presented to verify the efficiency of the proposed algorithm.

  • PDF

Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks

  • Alexandridis, Alex;Stavrakas, Ilias;Stergiopoulos, Charalampos;Hloupis, George;Ninos, Konstantinos;Triantis, Dimos
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.919-932
    • /
    • 2015
  • This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.

Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process (하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계)

  • Lee, Seung-Cheol;Kwun, Hak-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.