• 제목/요약/키워드: RBF Neural Networks

검색결과 95건 처리시간 0.023초

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

Applied AI neural network dynamic surface control to nonlinear coupling composite structures

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.571-581
    • /
    • 2024
  • After a disaster like the catastrophic earthquake, the government have to use rapid assessment of the condition (or damage) of bridges, buildings and other infrastructures is mandatory for rapid feedbacks, rescue and post-event management. This work studies the tracking control problem of a class of strict-feedback nonlinear systems with input saturation nonlinearity. Under the framework of dynamic surface control design, RBF neural networks are introduced to approximate the unknown nonlinear dynamics. In order to address the impact of input saturation nonlinearity in the system, an auxiliary control system is constructed, and by introducing a class of first-order low-pass filters, the problems of large computation and computational explosion caused by repeated differentiation are effectively solved. In response to unknown parameters, corresponding adaptive updating control laws are designed. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

심전도 신호의 기저선 잡음 제거를 위한 적응 신경망 필터 설계 ((A Design of Adaptive Neural Network Filter to Remove the Baseline Wander of ECG))

  • 이건기;김영일;이주원;조원래
    • 전자공학회논문지SC
    • /
    • 제39권1호
    • /
    • pp.76-84
    • /
    • 2002
  • 본 논문은 심전도 신호의 잡음제거에 있어 ST 세그먼트의 왜곡을 최소화함과 동시에 기저선 변동 잡음을 제거하기 위한 연구이다. 일반적인 표준필터와 적응필터는 심전도신호의 기저선 변동잡음을 제거하기 위해 주로 사용된다. 그러나 표준필터는 기저선 잡음의 시변 특성 때문에 고정된 주파수 대역으로 잡음을 제거하기가 어렵고, 적응필터를 이용하여 필터링 할 경우에는 참조신호를 설정하기가 매우 어렵다. 따라서 본 연구에서는 시-지연신경망과 RBF 신경망을 이용하여 참조신호 없이 잡음을 제거하는 새로운 구조의 적응 필터를 제안하였다. 그리고 제안된 기법의 성능을 평가하기 위해 MIT-BIH 심전도데이터를 이용하였고, 실험결과에서 평균 잡음 제거비는 표준 필터가 -16.3[dB], 적응 필터가 -44.9[dB]이고 제안된 필터의 경우에는 -53.3[dB]로 나타나 다른 필터의 경우보다 우수한 잡음 제거 성능을 보였다.

분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법 (A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems)

  • 김은미;박성미;김광희;이배호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1021-1028
    • /
    • 2005
  • 분류 및 회계문제에서의 일반적인 해법은, 현실 세계에서 얻은 정보를 행렬로 사상하거나, 이진정보로 변형하는 등 주어진 데이타의 가공과 이를 이용한 학습에서 찾을 수 있다. 본 논문은 현실세계에 존재하는 순수한 데이타를 근원공간이라 칭하며, 근원 데이타가 커널에 의해 사상된 행렬을 이원공간이라 한다. 근원공간 혹은 이원공간에서의 분류문제는 그 역이 존재하는 문제 즉, 완전해가 존재하는 문제와, 그 역이 존재하지 않거나, 역의 원소 값들이 무한히 커지는 불량조건 흑은 특이조건인 두 가지 형태로 존재한다. 특히, 실제 문제에 있어서 완전 해를 가진 문제이기 보다는 후자에 가까운 형태로 나타나게 된다. 결론적으로 근원데이타나 이원데이타를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키는 정규화과정이 필요하다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원공간에서의 데이타를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. GCV와 L-Curve는 정규화 인수를 찾는 대표적인 방법으로 두 방법 모두 성능면에서 동등하며 문제의 조건에 따라 다소 차이를 보인다. 그러나 이러한 두 방법은 문제해를 구하기 위해서는 정규화 인수를 구한후 문제를 재정의하는 이원적인 문제해결이라는 취약점을 갖는다. 반면, RBF 신경회로망을 이용한 방법은 정규화 인수와 해를 동시에 학습하는 단일화된 방법이 된다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 동적모멘트는 바이어스 학습을 포함한 방법과 포함하지 않은 방법에 각각 적용분석하였다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이타, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이타를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발 (Development of Sentiment Analysis Model for the hot topic detection of online stock forums)

  • 홍태호;이태원;리징징
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.187-204
    • /
    • 2016
  • 소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.