• 제목/요약/키워드: RBF Network

검색결과 245건 처리시간 0.036초

Support Vector Machine에 대한 커널 함수의 성능 분석 (Performance Analysis of Kernel Function for Support Vector Machine)

  • 심우성;성세영;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

원시데이터 축약 알고리즘을 이용한 신경망의 침입탐지시스템으로의 접근 (Neural network with audit data reduction algorithm for IDsystem)

  • 박일곤;문종섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.595-597
    • /
    • 2002
  • 현재 인터넷의 발달에 인한 다양한 공격의 가능성의 이유로 침입 탐지 시스템(IDsystem, IDS)의 중요성은 날로 커지고 있으며 네트워크의 보안을 보장하기 위한 방안으로서 널리 이용되고 있다. 그러나 작은 네트워크 환경에서도 IDsystem에 적용되는 audit data의 양이 많아짐으로서 시간당 처리속도와 IDsystem의 설정을 위한 시간이 더욱더 요구되며 전체적인 효율성이 감소하게 된다. 본 연구에서는 IDsystem으로 빠른 훈련과정과 일반화 능력, 구조적인 단순함으로 다양한 분야에서 연구가 진행 중인 신경망 모델 중 하나인 Radial Basis Function(RBF)를 사용하였으며, 효율성 제고를 위하여 RBF에 적용 할 입력 간들의 중요성을 선 처리 단계에서 판별하여 불필요한 입력 값들을 축약하기 위해 결정계수(R-square)같을 측정, 알려지지 않은 공격과 알려진 공격들을 판별 할 수 있는 IDsystem을 제안하였다.

  • PDF

RBF 신경망을 이용한 내용 기반 영상 검색 (Content-Based Image Retrieval using RBF Neural Network)

  • 이형구;유석인
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.145-155
    • /
    • 2002
  • 내용 기반 영상 검색에서 대부분의 기존 방법들은 서로 다른 특징들 사이의 선형 관계를 가정하고 또 사용자가 직접 각 특징의 가중치를 설정하도록 한다 허나 특징들 사이의 관계가 선형적으로 가정된 하에서는 고차원의 개념과 인간의 지각 주관성을 충분히 표현할 수 없는 단점이 있다. 본 논문에서는 신경망에 기반한 영상 검색 모델이 제안된다. 이는 RBFN을 이용한 내용 기반 영상 검색 기법과 인간컴퓨터 상호작용의 접근 방법을 기반으로 구축되었다. RBFN을 이용하여 특징들 사이의 비선형적 관계를 추출해낼 수 있고 사용자가 처음에 질의 영상을 선택하고 관련성 피드백을 통하여 점차적으로 목표 영상을 찾아나가도록 함으로써 영상의 비교를 더 정확하게 할 수 있다. 실험은 145개의 클래스로 구분되며 1,015개의 영상을 포함하는 데이타베이스를 사용하여 재생과 정도를 계산하였다. 실험 결과는 제안된 방법의 재생과 정도가 각각 93.45%과 80.61%로서, 기존의 선형 결합 방법이나 순위 기반 방법 그리고 역전파 알고리즘에 기반한 방법보다 더 뛰어난 검색 성능을 지님을 보여준다.

정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계 (Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity)

  • 박호성;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석 (Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network)

  • 백승현;황승준
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상 (Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion)

  • 하성룡;박대희;박상영
    • 한국지리정보학회지
    • /
    • 제5권2호
    • /
    • pp.16-24
    • /
    • 2002
  • 원격탐사 응용분야 중 토지피복 분류를 통한 지구환경의 원격탐지기법은 환경 관리, 도시계획 및 지리정보시스템의 응용분야에 광범위하게 사용되고 있는 접근방식이다. 본 연구는 다목적 실용위성(Korea Multi-Purpose Satellite : KOMPSAT)의 전자광학카메라(electro-optical camera : EOC)를 통해 취득한 영상의 토지피복 정보를 추출하는 방안을 제시하였다. 사용영상은 다중 분광정보를 보유하고 있는 공간해상도 30m의 Landsat TM과 6.6m의 공간해상도와 단일밴드로 구성되어 있는 KOMPSAT EOC영상이며, 연구 대상지역은 청주시 미호천 수계이다. 영상합성은 IHS(intensity hue saturation), HPF(high pass filtering), CN(color normalization), 그리고 Wavelet 변환방식을 적용하여 결과를 비교하였다. 합성된 영상은 RBF-NN(radial basis function neural network)과 ANN(artificial neural network)법을 이용하여 피복분류를 실시하였으며, 이상의 과정을 통해 최적 결과를 도출하는 영상합성 및 분류기법을 제시하였다.

  • PDF

Implementation and Experiment of Neural Network Controllers for Intelligent Control System Education

  • Lee, Geun-Hyeong;Noh, Jin-Seok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.267-273
    • /
    • 2007
  • This paper presents the implementation of an educational kit for intelligent system control education. Neural network control algorithms are presented and control hardware is embedded to control the inverted pendulum system. The RBF network and the MLP network are implemented and embedded on the DSP 2812 chip and other necessary functions are embedded on an FPGA chip. Experimental studies are conducted to compare performances of two neural control methods. The intelligent control educational kit(ICEK) is implemented with the inverted pendulum system whose movements of the cart is limited by space. Experimental results show that the neural controllers can manage to control both the angle and the position of the inverted pendulum systems within a limited distance. Performances of the RCT and the FEL control method are compared as well.

FNN에 의한 선박의 제어 (A ship control by fuzzy neutral network)

  • 강창남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1703_1704
    • /
    • 2009
  • Fuzzy neural ship controllers is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

적응 신경망을 이용한 동적 플랜트의 최적 제어에 관한 연구 (A Study on Optimized Adaptive Control of Nonlinear Plants Using Neural Network)

  • 조현섭;노용기;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1949-1950
    • /
    • 2006
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF

비선형 시스템의 신경망 직접 제어기 설계 (An Neural Network Direct Controller Design for Nonlinear Systems)

  • 조현섭;민진경;송영덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2827-2829
    • /
    • 2005
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF