• 제목/요약/키워드: RBF 커널

검색결과 29건 처리시간 0.024초

가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식 (HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface)

  • 박재완;오치민;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제10권8호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문은 HMM기반의 상반신 제스처 인식에 대하여 연구하였다. 공간상의 제스처를 인식하기 위해서는 일단 제스처를 구성하고 있는 포즈에 대한 구분이 우선되어야 한다. 인터페이스에 사용되는 포즈를 구분하기 위해서 정면과 옆면에 설치한 적외선 카메라 두 대를 실험에 사용하였다. 그리고 각각의 적외선 카메라에서 하나의 포즈에 대한 정면 포즈와 옆면 포즈로 나눠서 획득한다. 획득한 적외선 포즈 영상은 SVM의 비선형 RBF 커널 함수를 이용하여 구분하였다. RBF 커널을 사용하면 비선형적 분류 포즈들간의 오분류 현상을 구분할 수 있다. 이렇게 구분된 포즈들의 연속은 HMM의 상태천이행렬을 이용하여 제스처로 인식된다. 인식된 제스처는 OS Value에 매핑하여 기존의 Application에 적용할 수 있다.

자동분류기반 성격 유형별 도서추천시스템 개발을 위한 실험적 연구 (A Experimental Study on the Development of a Book Recommendation System Using Automatic Classification, Based on the Personality Type)

  • 조현양
    • 한국도서관정보학회지
    • /
    • 제48권2호
    • /
    • pp.215-236
    • /
    • 2017
  • 이 연구의 목적은 개인별 성향이나 성격 유형에 따라 선호하는 도서에 차이가 있음을 전제로, 어린이 청소년을 위한 추천도서의 책소개 정보를 활용하여 개인별 성격유형에 적합한 도서를 합리적으로 추천할 수 있는 서평 자동분류시스템을 개발하는 것이다. 연구에서 사용한 데이터는 국립어린이청소년도서관에서 제공하는 501권의 유아 및 아동도서를 대상으로 하였다. 실험에 활용된 2가지 기계학습 모델(비선형 커널 및 선형 커널) 각각에 대해서 총 6가지의 색인어 가중치 계산 방법과 자질 선택 방법, 그리고 10가지의 자질 선정 임계치 조합으로 구성된 360개의 분류 모델들을 구성하고 각각의 성능을 측정하였다. 전체적으로는 선형 커널을 이용한 SVM 기반 학습 방법(LIBLINEAR)이 비선형 분류를 지원하는 LibSVM(RBF 커널) 모델보다 더 나은 성능을 보이는 것으로 나타났다. 다만 성능 측정 결과는 뉴스 기사나 논문을 대상으로 한 문헌 분류 성능에 비해서 낮은 것으로 나타났으나, 합리적인 분류 기준이 존재하는 뉴스기사나 주제 분류에 비해서 성격 유형 기반 분류는 그 난이도가 높다는 것을 감안할 때, 초기 실험 결과로서의 의미는 있다.

RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술 (Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel)

  • 마카라 완니;고광은;박승민;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

실시간 영상처리를 위한 SVM 분류기의 FPGA 구현 (FPGA Design of SVM Classifier for Real Time Image Processing)

  • 나원섭;한성우;정용진
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.209-219
    • /
    • 2016
  • 영상처리에 쓰이는 기계학습 방법 중 하나인 SVM은 일반화 능력이 뛰어나 객체를 분류하는 성능이 뛰어나다. SVM을 이용하여 객체를 분류하기 위해서는 여러 번의 MAC 연산을 반복해서 수행해야 한다. 하지만 영상의 해상도가 늘어남에 따라 분류를 해야 하는 개체가 늘어나게 되면 연산 시간이 증가하게 되어 실시간 처리를 요하는 고속 시스템에 사용하기 어렵다. 본 논문에서는 실시간 처리를 요하는 고속 시스템에서도 사용이 가능한 SVM 분류기 하드웨어 구조를 제안한다. 실시간 처리를 하는데 제한 요소가 되는 반복 연산은 병렬처리를 통하여 동시에 계산할 수 있게 하였고 다양한 종류의 특징점 추출기와도 호환이 가능하도록 설계하였다. 하드웨어 구현에 사용한 커널은 RBF 커널이며 커널 사용으로 생기는 지수 연산은 식을 변형하여 고정소수점 연산이 가능하도록 하였다. 제안한 하드웨어의 성능을 확인하기 위해 Xilinx ZC706 보드에 구현하였고 $1360{\times}800$ 해상도 이미지에 대한 수행 시간은 동작 주파수 100 MHz에서 약 60.46 fps로 실시간 처리가 가능함을 확인했다.

Support Vector Machine에 대한 커널 함수의 성능 분석 (Performance Analysis of Kernel Function for Support Vector Machine)

  • 심우성;성세영;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

모멘트와 바이어스 학습법에 의한 학습 성능 (Learning performance of by the momentum and the bias learning method)

  • 김은미;이배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.431-434
    • /
    • 2005
  • 근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

  • PDF

지역적 특성을 갖는 동적 선택 방법에 기반한 다중 인식기 시스템 (A Multiple Classifier System based on Dynamic Classifier Selection having Local Property)

  • 송혜정;김백섭
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.339-346
    • /
    • 2003
  • 본 논문에서는 지역적 특성을 가지는 작은 인식기(마이크로 인식기)의 모음으로 인식기를 구현하는 다중 인식기 시스템을 제안한다. 각 학습패턴에서 k개의 이웃한 학습패턴을 추출해서 학습한 인식기를 마이크로인식기라고 한다. 각 학습패턴에는 한개 이상의 마이크로 인식기를 부여한다. 본 논문에서는 선형 커널을 사용한 SVM과 RBF 커널을 사용한 SVM등 두 가지 형태의 마이크로 인식기를 사용한다. 테스트 패턴이 인가되면 테스트패턴 주변의 마이크로인식기들 중에서 성능이 가장 좋은 것 하나를 선택한 후 선택된 인식기로 최종 클래스를 결정한다. 테스트패턴 주변에 있는 학습패턴들을 인식한 결과를 성능 측정 척도로 사용한다. Elena 데이터 베이스를 사용하여 기존의 단일 인식기, 다중 인식기 결합, 다중 인식기 선택 방법들과 인식률을 비교한 결과 제안된 방법이 우수함을 알 수 있다.

분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법 (A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems)

  • 김은미;박성미;김광희;이배호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1021-1028
    • /
    • 2005
  • 분류 및 회계문제에서의 일반적인 해법은, 현실 세계에서 얻은 정보를 행렬로 사상하거나, 이진정보로 변형하는 등 주어진 데이타의 가공과 이를 이용한 학습에서 찾을 수 있다. 본 논문은 현실세계에 존재하는 순수한 데이타를 근원공간이라 칭하며, 근원 데이타가 커널에 의해 사상된 행렬을 이원공간이라 한다. 근원공간 혹은 이원공간에서의 분류문제는 그 역이 존재하는 문제 즉, 완전해가 존재하는 문제와, 그 역이 존재하지 않거나, 역의 원소 값들이 무한히 커지는 불량조건 흑은 특이조건인 두 가지 형태로 존재한다. 특히, 실제 문제에 있어서 완전 해를 가진 문제이기 보다는 후자에 가까운 형태로 나타나게 된다. 결론적으로 근원데이타나 이원데이타를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키는 정규화과정이 필요하다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원공간에서의 데이타를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. GCV와 L-Curve는 정규화 인수를 찾는 대표적인 방법으로 두 방법 모두 성능면에서 동등하며 문제의 조건에 따라 다소 차이를 보인다. 그러나 이러한 두 방법은 문제해를 구하기 위해서는 정규화 인수를 구한후 문제를 재정의하는 이원적인 문제해결이라는 취약점을 갖는다. 반면, RBF 신경회로망을 이용한 방법은 정규화 인수와 해를 동시에 학습하는 단일화된 방법이 된다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 동적모멘트는 바이어스 학습을 포함한 방법과 포함하지 않은 방법에 각각 적용분석하였다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이타, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이타를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

불균형 자세 예방용 IMU 내장 넥밴드를 이용한 앉은 자세 분류 (Classification of Sitting Position by IMU Built in Neckband for Preventing Imbalance Posture)

  • 마상용;심현민;이상민
    • 재활복지공학회논문지
    • /
    • 제9권4호
    • /
    • pp.285-291
    • /
    • 2015
  • 본 논문에서는 IMU(inertial measurement unit)의 데이터를 이용하여 사람의 앉은 자세를 분류하는 알고리즘을 제안한다. 제안하는 알고리즘은 IMU의 데이터를 주성분 분석법(principle component analysis: PCA)을 이용하여 특징 벡터를 3개로 축소시켰고, RBF(radial basis function) 커널을 적용한 서포트 벡터 머신(support vector machine: SVM)을 이용하여 자세를 분류하였다. 데이터의 측정을 위하여 건강한 성인 3명을 대상으로 실험을 실시하였고, 데이터의 수집을 위하여 넥밴드 형태의 이어폰에 IMU를 내장한 장치를 개발하여 착용하였다. 피험자는 각각 neutral position, smartphoning, writing의 세 가지 앉은 자세에 대하여 실험을 진행하였다. 실험 결과 제안하는 PCA-SVM 알고리즘은 특징 벡터의 차원을 25%로 축소시키면서도 95%의 신뢰를 보였다.

  • PDF

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF