• 제목/요약/키워드: RBF 뉴럴네트워크

검색결과 25건 처리시간 0.018초

PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석 (A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures)

  • 박찬준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구 (A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks)

  • 오성권;김현기;김정태
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출 (Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks)

  • 최정내;김영일;오성권;김정태
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구 (A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks)

  • 오성권;나현석;김욱동
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.