• 제목/요약/키워드: RBF (Radial-Basis Function)

검색결과 244건 처리시간 0.032초

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • ;고광은;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

모바일 카메라를 이용한 경량 3D 모델링 (Light 3D Modeling with mobile equipment)

  • 주승환;서희석;한성휴
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.107-114
    • /
    • 2016
  • Recently, 3D related technology has become a hot topic for IT. 3D technologies such as 3DTV, Kinect and 3D printers are becoming more and more popular. According to the flow of the times, the goal of this study is that the general public is exposed to 3D technology easily. we have developed a web-based application program that enables 3D modeling of facial front and side photographs using a mobile phone. In order to realize 3D modeling, two photographs (front and side) are photographed with a mobile camera, and ASM (Active Shape Model) and skin binarization technique are used to extract facial height such as nose from facial and side photographs. Three-dimensional coordinates are generated using the face extracted from the front photograph and the face height obtained from the side photograph. Using the 3-D coordinates generated for the standard face model modeled with the standard face as a control point, the face becomes the face of the subject when the RBF (Radial Basis Function) interpolation method is used. Also, in order to cover the face with the modified face model, the control point found in the front photograph is mapped to the texture map coordinate to generate the texture image. Finally, the deformed face model is covered with a texture image, and the 3D modeled image is displayed to the user.

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

시계열예측에 대한 역전파 적용에 대한 결정적, 추계적 가상항 기법의 효과 (The Effect of Deterministic and Stochastic VTG Schemes on the Application of Backpropagation of Multivariate Time Series Prediction)

  • 조태호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.535-538
    • /
    • 2001
  • Since 1990s, many literatures have shown that connectionist models, such as back propagation, recurrent network, and RBF (Radial Basis Function) outperform the traditional models, MA (Moving Average), AR (Auto Regressive), and ARIMA (Auto Regressive Integrated Moving Average) in time series prediction. Neural based approaches to time series prediction require the enough length of historical measurements to generate the enough number of training patterns. The more training patterns, the better the generalization of MLP is. The researches about the schemes of generating artificial training patterns and adding to the original ones have been progressed and gave me the motivation of developing VTG schemes in 1996. Virtual term is an estimated measurement, X(t+0.5) between X(t) and X(t+1), while the given measurements in the series are called actual terms. VTG (Virtual Tern Generation) is the process of estimating of X(t+0.5), and VTG schemes are the techniques for the estimation of virtual terms. In this paper, the alternative VTG schemes to the VTG schemes proposed in 1996 will be proposed and applied to multivariate time series prediction. The VTG schemes proposed in 1996 are called deterministic VTG schemes, while the alternative ones are called stochastic VTG schemes in this paper.

  • PDF

물리기반 형상변형의 몰입감 증대를 위한 상호작용기술 (Interaction Technique of Physics Based Deformation for User Immersion)

  • 최한균;김현수;이승주;박민기;이관행
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.216-219
    • /
    • 2009
  • 3 차원 콘텐트를 이용한 물리기반 시뮬레이션은 최근 컴퓨터 그래픽스 분야에서 가장 활발히 연구되는 연구 중 하나이다. 이와 더불어 이러한 기술들과 사용자간의 몰입감을 증가시키는 상호작용 기술 역시 계속하여 증가하는 추세이다. 본 연구는 이러한 추세에 발맞추어 물리기반 형상변형 기술의 몰입감을 증가시키기 위한 상호작용 방법을 제안한다. 제안된 방법에서는 3 차원 객체와 사용자와의 효율적인 상호작용을 위해서 시스템을 증강현실 환경에서 구현하였다. 증강현실을 이용한 시스템의 제약조건은 실시간 계산이다. 때문에, 제안된 시스템은 RBF(Radial Basis Function) [1] 와 LSM (Lattice Shape Matching) [2, 3] 방법을 조합하여 물리기반 상호작용 기술을 완성 하였고 실험을 통해 실시간 계산을 확인하였다. 또한, 3 차원 객체가 충돌하여 변형이 일어날 때 감각형 객체 (Tangible object)에 진동을 주어 물리기반 형상변형의 사용자 상호작용에 관한 몰입감을 증가시켰다.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제43권3호
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.