• Title/Summary/Keyword: RBF(Radial Basis Function) networks

Search Result 85, Processing Time 0.026 seconds

Intelligent Android Malware Detection Using Radial Basis Function Networks and Permission Features

  • Abdulrahman, Ammar;Hashem, Khalid;Adnan, Gaze;Ali, Waleed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.286-293
    • /
    • 2021
  • Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM (퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계)

  • Roh, Seok-Beon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF

퍼지-신경망을 이용한 시간지연 공정 시스템에 대한 적응제어 기법

  • 최중락;곽동훈;이동익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.994-998
    • /
    • 1996
  • We propose an approach to integrating fuzzy logic control with RBF(Radial Basis Function) networks and show how the integrated network can be applied to multivariable self-organizing and self-learning fuzzy controller. Using the hybrid learning algorithm. To investigate its usefulness and performance, this controller is applied to a time-delayed process system. Simulation results show good control performance and fast convergency in hybrid loaming method.

  • PDF

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

An Image Compression Method using Radial-Basis Function Networks (Radial-BAsis Function Networks를 이용한 영상 압축 방법)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.913-919
    • /
    • 2000
  • 본 논문에서는 인간 시지각을 고려한 새로운 영상 압축 방법을 제시한다. 영상의 화소의 값들이 x-y 평명상에서 정의된 3차원 곡면 위에 있는 점들로 가정하여, 영상을 곡면의 복잡도에 따라 나누고, 나누어진 각각의 곡면(영역)은 Radial-Basis Function (RBF)를 사용하여 근사화하는 방법으로 영상을 압축한다. 본 방법은 JPEG 압축 방법과 비슷한 압축율과 영상의 질을 얻을 수 있다.

  • PDF

Relation between Multidimensional Linear Interpolation and Regularization Networks

  • 엄경식;민병구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.89-95
    • /
    • 1997
  • This paper examines the relation between multidimensional linear interpolation (MDI) and regularization net-works, and shows that an MDI is a special form of regularization networks. For this purpose we propose a triangular basis function(TBF) network. Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF