• Title/Summary/Keyword: RBDPO

Search Result 4, Processing Time 0.014 seconds

Study of Dielectric Properties of a Potential RBD Palm Oil and RBD Soybean Oil Mixture as Insulating Liquid in Transformer

  • Azmi, Kiasatina;Ahmad, Azmier;Kamarol, Mohamad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2105-2119
    • /
    • 2015
  • This paper reported the experimental result of dielectric properties of Refined, Bleached and Deodorized Palm Oil (RBDPO) combined with 0-50% of Refined, Bleached and Deodorized Soybean Oil (RBDSO). The dielectric strength and relative permittivity of RBDPO/RBDSO was higher compared to mineral oil at all ranges of ratios and temperatures which indicated a positive sign for its possible use as insulating liquid in a transformer. All ratios of the RBDPO/RBDSO mixture also demonstrated lower dissipation factor compared to mineral oil at 40℃, 70℃ and 90℃. Apart from that, the kinematic viscosity for the oil mixtures shown exceeded the IEC 60296 as well as the mineral oil results. 70%RBDPO/30%RBDSO mixture ratio was chosen as the best mixing percentage after comparison was made with the mineral oil and IEC 60296 standard where the mixture accumulated the most satisfactory of dielectric properties hence making it as the potential candidate for palm and soybean-based transformer oil.

Evaluation on the Lightning Breakdown Voltages of Palm Oil and Coconut Oil under Non-Uniform Field at Small Gap Distances

  • Thien, Yee Von;Azis, Norhafiz;Jasni, Jasronita;Kadir, Mohd Zainal Abidin Ab;Yunus, Robiah;Ishak, Mohd Taufiq;Yaakub, Zaini
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.184-191
    • /
    • 2016
  • In recent years, there are a number of studies that have been carried out to explore the alternative for Mineral Oil (MO) as dielectric insulating fluid in transformers due to the increasing tight regulation on safety and environment. Vegetable oils have been identified as suitable candidate since it is biodegradable, non-toxic and high flash/fire points which ensure more in-service safety. Among the types of vegetable oils considered for transformers application are Palm Oil (PO) and Coconut Oil (CO). This paper presents an experimental study on the lightning breakdown voltages of PO and CO under non-uniform electric field based on needle-sphere electrodes configuration at 3 small gap distances. The type of PO used in this study is Refined Bleached and Deodorized Palm Oil (RBDPO) Olein. The main focus of this study is to examine the lightning breakdown performance of RBDPO and CO under different test conditions and assess its suitability as dielectric insulating fluid in transformers. The effect of voltage polarities (positive and negative) and testing methods (rising-voltage, up-and-down and multiple-voltage) were investigated. The data obtained from all tests were analysed by Weibull distribution in order to determine the withstand voltages for each type of oils. It was found that the breakdown voltages of RBDPO and CO are comparable with MO under positive lightning impulse. Under negative lightning impulse, the breakdown voltage of MO is slightly higher than RBDPO and CO. There is no significant effect of testing methods and voltage polarities on lightning breakdown voltages of RBDPO and CO. Based on the statistical analysis, it is found that the breakdown voltages of RBDPO and CO at 1% probability are slightly lower than MO.

Investigation on the Dielectric, Physical and Chemical Properties of Palm Oil and Coconut Oil under Open Thermal Ageing Condition

  • Mohamad, Nur Aqilah;Azis, Norhafiz;Jasni, Jasronita;Kadir, Mohd Zainal Abidin Ab;Yunus, Robiah;Ishak, Mohd Taufiq;Yaakub, Zaini
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.690-698
    • /
    • 2016
  • In this paper, a study is carried out to investigate the dielectric, physical and chemical properties of Palm Oil (PO) and Coconut Oil (CO) under open thermal ageing condition. The type of PO used in this study is Refined Bleached and Deodorized Palm Oil (RBDPO) Olein. The ageing experiment was carried out at 85 ℃ and 115 ℃ for 1, 3, 5, 7 and 14 days. Several parameters were measured such as AC breakdown voltage, dielectric dissipation factor, relative permittivity, resistivity, viscosity, moisture and acidity throughout the ageing duration. Based on the study, it is found that there are no significant changes on the AC breakdown voltages and relative permittivities for both RBDPO and CO. At ageing temperature of 115℃, there are clear reduction trends of dielectric dissipation factor for CO and resistivities for most of RBDPO. On the other hand, no clear trends are observed for viscosities, moisture and acidities of RBDPO and CO throughout the ageing duration.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.