• Title/Summary/Keyword: RB68C5

Search Result 15, Processing Time 0.022 seconds

Change of Korean Ginseng Components with High Temperature and Pressure Treatment (고온고압처리에 의한 인삼의 성분 변화)

  • Yang, Seung-Joon;Woo, Koan-Sik;Yoo, Jeong-Sik;Kang, Tae-Su;Noh, Young-Hee;Lee, Jun-Soo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.521-525
    • /
    • 2006
  • Korean ginseng was heat treated at various temperatures (110, 120, 130, 140 and $150^{\circ}C$) and times (1, 2, 3, 4, and 5 hr). The heat treated ginseng extract was analyzed for the total polyphenol content, total flavonoid content, DPPH free-radical scavenging, 5-HMF and ginsenoside. The total phenolics and flavonoid content increased with increasing treatment temperature and time. The highest total phenolics content was 29.46 mg/g (d.b) in $150^{\circ}C$ for 1hr (control: 2.68 mg/g). The highest total flavonoid content was 4.75mg/g (d.b) in $150^{\circ}C$ for 2hr (control: 0.39 mg/g). The antioxidant activity increased until $140^{\circ}C$ for 3 hours. An extension of the treatment time did not have any effect, and the antioxidant activity decreased at temperatures higher than $150^{\circ}C$ for more than 2 hours. The content of ginsenoside $Rg_1$, Re, $Rb_2$ and Rb3 rapidly decreased with increasing treatment temperature and time. Ginsenoside $Rg_3$ and $Rh_2$ were newly produced, or their contents increased with increasing treatment temperature and time.

Effect of Antimicrobial Peptide from Coptidis Rhizoma on Candida albicans Infection (황련 유래 Antimicrobial Peptide의 Candida albicans 감염 억제효과)

  • Lee, Jue-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • We previously reported the protein isolated from Coptidis Rhizoma (CRP), which has antifungal activity against a fungal pathogen, Candida albicans. In the current study, we investigated what portion in the CRP is responsible for the antifungal activity. For the investigation, the CRP was fractionated on a Shepadex G-50 column. Data resulting from the fractionation, seven fractions were obtained. Fractions (Fr.) I, II, and III eluted initially from the column showed no inhibitory effect on the growth of C. albicans, whereas Fr. IV, V, and VI eluted later revealed inhibition of the growth, and Fr. IV and VI showed potent antifungal activity by broth susceptibility analysis. However, Fr. VI was contained in the CRP more than Fr. IV, which led us to select the VI for the following experiments. In a murine model of a subcutaneous candidiasis caused by C. albicans, the Fr. VI displayed a therapeutic effect on nude mice pretreated with anti-neutrophil monoclonal antibody (RB68C5) and then infected subcutaneously with live C. albicans. At day 16, these mice were healed almost up to 78% of the infected area when compared to infected area of control nude mice that received diluent (Dulbecco's Phosphate-Buffered Saline; DPBS), instead of the Fr. VI (P<0.01). The Fr. VI blocked hyphal formation from blastoconidial form of C. albicans (P<0.01), which might prevent penetration of hyphae to the deeper site of skin and thus helps the healing. In the ionic strength test, the effect of Fr. was influenced by $Ca^{2+}$ ion just like other known antimicrobial peptides, but the influence was affected at an extremely high concentration such as 500 mM. Thus, such ion-concentration is considered to be meaningless in the clinical situation. Considering all data together, Coptidis Rhizoma is appeared to produce an antimicrobial peptide that has therapeutic effect on subcutaneous infection caused by C. albicans.

Difference of Ginsenoside Yields in Red Ginseng Parts According to Extraction Time at Low Temperature (저온에서 추출시간에 따른 홍삼 부위별 ginsenoside 함량 비교)

  • Han, Jin-Soo;Kang, Sun-Joo;Nam, Ki-Yeul;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • In this study, the contents of ginsenoside were compared according to the red ginseng extract times to provide basic information for developing nutraceutical foods using red ginseng. The highest total ginsenoside contents of the main, lateral, and fine root extracts were 23.04, 65.68, and 295.92 mg/100 mL when extracted at $75^{\circ}C$ for 21, 18, and 12 hours, respectively. The total ginsenoside content showed a tendency to decrease as the extraction times were increased. The highest Rb1 and Rg1 contents of the main, lateral, and fine root extracts were 5.76, 28.39, and 117.83 mg/100 mL when extracted at $75^{\circ}C$ for 18, 15, and, 12 hours, respectively, and their highest Rb2 and Re contents were 5.76, 28.39, and 117.83 when extracted under the same conditions. The prosapogenin content of the red ginseng extract increased along with the extraction time. The highest total ginsenoside extraction ratios of the main, lateral, and fine root extracts of the red ginseng at $75^{\circ}C$ were 21.3, 21.1, and 67.1%, respectively.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Bioavailability and Anti-inflammatory Effect of Fermented Red Ginseng in BALB/c Mouse (BALB/c 마우스에서 발효 홍삼 Ginsenoside의 생체이용율과 항염효과)

  • Lee, Eun Kyu;Bae, Chu Hyun;Kim, Yu Jin;Park, Soo-Dong;Shim, Jae-Jung;Yu, Youngbob;Lee, Jung-Lyoul
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2021
  • The fermented red ginseng by microorganism is known to increase pharmacological activity in vivo. To evaluate the bioavailablity of red ginseng fermented by probiotics, we conducted the pharmacokinetic study of ginsenoside Rb1, Rd and total ginsenosides (TG, ginsenosides Rb1 + Rd + Rg1 + F2 + Rg3 + compound K) in BALB/C mice. The AUC value of ginsenoside Rb1 in mice serum administered with 600mg/kg drugs showed 21.93 ± 14.68 ng·h/mL (RGw, water extract), 275.211 ± 110.04 ng·h/mL (RGe, 50% ethanol extract) and 404.91 ± 162.57 ng·h/mL (fRGe, fermented red ginseng extract). Analysis of ginsenoside Rd also showed a higher ACU value in fRGe than in RGw or RGe. And the AUC value of total ginsenosides in mice serum treated with 600 mg/kg were observed 42.12 ± 23.44 ng·h/mL (RGw), 321.44 ± 133.5 ng·h/mL (RGe) and 537.33 ± 229.01 ng·h/mL (fRGe), respectively. Cmax value of ginsenoside Rb1 in mice administered with 600mg/kg were observed 3.67 ± 3.34 ng/mL (RGw), 23.27 ± 8.81 ng/mL (RGe) and 25.52 ± 7.29 ng/mL (fRGe). These results can be considered that the fermented red ginseng has more bioavailability than that of unfermented red ginseng. In quantitative analysis of the inflammation-related cytokines IL-1β and TNF, no significant difference was found between the fermented red ginseng (fRGe) and the red ginseng (RGe).

The Chemical and 1,1-Diphenyl-2-Picrylhydrazyl Radical Scavenging Activity Changes of Ginsenosides Rb1 and Rg1 by Maillard Reaction

  • Yamabe, Noriko;Lee, Jin-Gyun;Lee, Yong-Jae;Park, Chan-Hum;Kim, Hyun-Young;Park, Jeong-Hill;Yokozawa, Takako;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • The chemical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity changes of ginsenoside $Rb_1$-glycine and ginsenoside $Rg_1$-glycine mixtures by Maillard reaction were investigated to identify the role of Maillard reaction in the increased antioxidant activity of ginseng by heat-processing. The DPPH radical scavenging activity of $Rg_1$-glycine mixture was more strongly increased by heat-processing than that of $Rb_1$-glycine mixture. From the analyses of ginsenosides, $Rb_1$ was gradually changed into 20(S)-$Rg_3$, 20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ by heat-processing. $Rg_1$ was gradually changed into 20(S)-$Rh_1$, 20(R)-$Rh_1$, $Rk_3$ and $Rh_4$ by heat-processing. However, the generation of these less-polar ginsenosides was not related to the increased DPPH radical scavenging activity of $Rb_1$-glycine and $Rg_1$-glycine mixtures because their DPPH radical scavenging activities were already significantly increased when dried at $50^{\circ}C$, which temperature induce no structural changes of ginsenosides. In the comparison of browning compound levels of $Rg_1$-glycine and $Rb_1$-glycine mixtures, the extents of Maillard reaction were positively correlated with their increased free radical scavenging activities. Based on the chemical and DPPH radical scavenging activity changes of $Rg_1$-glycine and $Rb_1$-glycine mixtures by heat-processing, we clearly identified that the increased free radical scavenging activity of ginsenoside is mediated by the Maillard reaction between sugar moiety of ginsenoside and amino acid.

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Quality and Functional Properties of Red Ginseng Prepared with Different Steaming Time and Drying Methods (원료삼의 증삼 및 건조 조건별 홍삼의 품질 및 기능성)

  • Kim, Kyo-Youn;Shin, Jin-Ki;Lee, Su-Won;Yoon, Sung-Ran;Chung, Hun-Sik;Jeong, Yong-Jin;Choi, Myung-Sook;Lee, Chi-Moo;Moon, Kwang-Deog;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.494-499
    • /
    • 2007
  • The quality and functional properties of red ginseng in relation to steaming and drying conditions were evaluated. Fresh ginseng (5-year roots), cultivated in the Punggi region, were steamed for 2.5, 3.5, or 4.5 hr, and then dried by hot-air (60-$65^{\circ}C$/24 hr and $40^{\circ}C$,/3-4d) freezing ($-80^{\circ}C$/56 hr), and infrared (900 W/$62^{\circ}C$/68 hr). Hunter#s yellowness (b-value) and browning indexes (420 nm) of the samples were higher in the rootlets than in the main roots. Furthermore, these same index values were found to be high in the order of 3.5, 4.5, and 2.5 hr and infrared, hot-air, and freezing for steaming and subsequent drying, respectively. Analysis of soluble solids, total phenolics, total flavonoids, acidic polysaccharides, and electron donating abilities of the steamed and dried samples showed that 3.5hr of steaming with infrared drying was optimal. However, crude saponin contents were not influenced by steaming and drying conditions. The contents of $ginsenoside-Rg_l$, -Re, -Rf and $-Rb_2$, which were the major components in the samples, were reduced with steaming time, while the amounts of $-Rg_3$ and $-Rh_2$ increased, reaching the highest levels at 3.5 and 4.5 hr in the main roots and rootlets, respectively. The contents of $-Rg_3$ and $-Rh_2$ were similar in both the freeze-dried and hot-air dried samples.

Ramlibacter ginsenosidimutans sp. nov., with Ginsenoside-Converting Activity

  • Wang, Liang;An, Dong-Shan;Kim, Song-Gun;Jin, Feng-Xie;Kim, Sun-Chang;Lee, Sung-Taik;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.311-315
    • /
    • 2012
  • A novel ${\beta}$-proteobacterium, designated BXN5-$27^T$, was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-$27^T$ exhibited ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis $TMB834^T$ and Ramlibacter tataouinensis$TTB310^T$ (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were $C_{16:0}$, summed feature 4 (comprising $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2OH), and $C_{17:0}$ cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-$27^T$ to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-$27^T$ (=DSM $23480^T$ = LMG $24525^T$ = KCTC $22276^T$).

Ginsenoside Change and Antioxidation Activity of Fermented Ginseng (발효인삼의 Ginsenoside 변화와 항산화 활성)

  • Doh, Eun-Soo;Chang, Jun-Pok;Lee, Kun-Hee;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.4
    • /
    • pp.255-265
    • /
    • 2010
  • The extent of growth L. plantarum (LP), L. delbrueckii subsp. bulgaricus (LD), L. fermentum (LF), S. thermophilus (ST), B. longum (BI) and S. cerevisiae (SA) was generally good with the lower concentration of the ginseng extract. Total sapogenin content was slightly different with kinds of a fermentation microorganism and the time of fermentation process, and generally reduced compare to before fermentation. The content of ginsenoside Rb1, Rb2, Rb3, Re and Rf were decreased with the fermentation but ginsenoside Rd was increased by the E, LF and SA fermented extract. The content of compound K increased in the order of not-fermented extrac < enzyme fermented extract < enzyme and microorganism fermented extract, and as the fermented time get longer, the content of compound K was sightly increased. Especially, the content of compound K of the SA fermented extract was the most increased, also it of the BI, LD and LF fermented extract was increased, so these extract were considered a high valuable. Polyphenol content of the BI, LD, LP and ST fermented extract indicated $9.18{\pm}0.39{\sim}15.68{\pm}0.54$ mg/10 g which was lower than it of a not-fermented extract ($11.92{\pm}0.26{\sim}28.41{\pm}0.39$ mg/10 g). Flavonoid content of a ginseng fermented extract indicated $26.93{\pm}0.17{\sim}156.45{\pm}1.29$ mg/10 g, it was higher than a not-fermented extract ($18.06{\pm}0.90$ mg/10 g). As the fermented time get longer, the flavonoid content tendency to increase. DPPH radical scavenging activity of a fermented ginseng extract was $24.11{\pm}1.41{\sim}55.62{\pm}0.33%$, it was slightly lower compared to a natural antioxidant, vitamin C. But it of the LF and ST fermented extract was similar to a natural antioxidant, vitamin C. It has not a concerned in a fermentation. Nitrite scavenging ability of a 24 hr fermented extract was above 80% at pH 2.5 and 4.2, it was similar to an artificial antioxidant, BHT ($84.76{\pm}0.13%$; pH2.5, $84.98{\pm}0.11%$; pH 4.2). It has not a concerned in a fermentation. SOD-like activity of a fermented extract was lower than that of a not-fermented extract ($19.22{\pm}0.51%$), but it of the E and LP-fermented extract was a very highly notable value. As the fermented time get longer, the SOD-like activity tendency to increase.