• Title/Summary/Keyword: RANS equations

Search Result 197, Processing Time 0.024 seconds

Numerical Analysis of Flow around Propeller Rotating Beneath Free Surface (자유수면 아래에서 회전하는 프로펠러 주위 유동 수치 해석)

  • Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.427-435
    • /
    • 2015
  • This paper provides the numerical results of a simulation of the flow around a propeller working beneath the free surface. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes (URANS) equations, where the wave-making problem is solved using a volume-of-fluid (VOF) method. The numerical analysis focuses on the propeller wake structure affected by the free surface, where we consider another free surface boundary condition that treats the free surface as a rigid wall surface. The propeller wake under the effect of these two free surface conditions shows a reduction in the magnitude of the longitudinal and vertical flow velocities, and its vortical structures strongly interact with the free surface. The thrust and torque coefficient under the free surface effect decrease about 3.7% and 3.1%, respectively. Finally, the present numerical results show a reasonable agreement with the available experimental data.

Numerical Viscous Flow Analysis of Ducted Marine Propeller (Ducted Marine Propeller의 점성 유동 수치 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.188-193
    • /
    • 2003
  • The present work solved 3D incompressible RANS equation on a rotating, non-orthogonal multi-blocked grid system to efficiently analyze ducted marine propulsor with rotor-stator interaction. To handle the interface boundary between a rotor and a stator maintaining the conservative property, the sliding multiblock technique using the cubic spline interpolation and the bilinear interpolation technique were applied. To validate present code, a turbine flow having rotor- stator interaction was simulated. Time averaged pressure coefficients were compared with experiments and good agreement was obtained. After the code validation, the flowfield around a single-stage ducted marine propulsor was simulated.

  • PDF

A Numerical Study on the Effect of the Tail Wing of a Projectile on the Base Drag (포탄의 꼬리날개가 기저항력에 미치는 영향에 대한 해석적 연구)

  • Noh, Seonghyeon;Kim, Jongrok;Bang, Jaewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.625-636
    • /
    • 2019
  • Recently, research on projectiles with wings for precision guidance is actively underway. In this study, we analyzed how the tail fins attached to the projectile affect the base drag. Aerodynamic analysis was performed with RANS(Reynolds Averaged Navier-Stokes) equations using FLUENT, a commercial CFD(Computational Fluid Dynamics) code. Through the aerodynamic analysis, the base drag characteristics of the projectile by parameters (number, length, thickness, position, shape of tail fin) were investigated. The results of this study are expected to be applicable to aerodynamic design of tail fins mounted on projectiles.

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

On Numerical Modeling of Kerosene/Liquid Oxygen Coaxial Swirl Injectors (케로신/액체산소 동축 와류형 분사기에 대한 수치해석 모델 고찰)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.729-732
    • /
    • 2010
  • The present study has been motivated by the development of a reliable numerical methodology for simulation of kerosene/LOx coaxial swirl injectors. To deal with thermodynamic non-ideality and anomalies of transport properties pronounced at supercritical pressures, a set of subroutine libraries has been constructed based on the cubic equations of state, and applied to an existing flamelet analysis code. For computational efficiency, two-dimensional axisymmetric RANS formulation with swirl was adopted and validated successfully against an isothermal coaxial swirling jet. For the actual problem with high pressure combustion, however, numerical results show that the RANS models yield excessive production of turbulence probably due to high density gradient magnitude in the vicinity of mixing layer of swirling film flow, and imply strongly further improvement of the turbulence models.

  • PDF

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.

A Numerical Study on a Circulation Control Foil using Coanda Effect (코앤다 효과를 이용한 순환 제어 날개의 수치적 연구)

  • J.J. Park;S.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2000
  • A numerical study on the viscous flow around a 2-dimensional circulation control foil is carried out for application on the field of naval architecture and ocean engineering. The governing equations are the RANS and the continuity equations. The equations are discretized by finite difference method and MAC method and the pressure poisson equation is calculate by a SOR method and an O-type non-staggered boundary fitted coordinate system which is overlapped near the slot is used to improve the numerical accuracy. Turbulence is approximated by a modified Baldwin-Lomax turbulence model. In the present paper, the Coanda effect on a 2-dimensional foil of a 20% thickness ellipse with modified rounded trailing edge has been numerically studied. The change in drag and lift of the foil with various jet momentums are calculated and compared to the experimental results to show good agreements.

  • PDF

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

ANALYSIS ON THE DYNAMIC STALL OVER AN OSCILLATING AIRFOIL USING TRANSITION TRANSPORT EQUATIONS (천이 전달 방정식을 이용한 진동하는 익형의 동적 실속의 해석)

  • Jeon, S.E.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Numerical investigation on the dynamic stall over an oscillating airfoil is presented. A Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with transition transport equations for the natural transition. Computational results considering the turbulent transition are compared with the fully turbulent computations and the experimental data. Results with transition prediction show closer correlation with the experimental data than those with the fully turbulent assumption, especially in the reattachment region.