• Title/Summary/Keyword: RANS equations

Search Result 197, Processing Time 0.022 seconds

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Numerical Analysis on the Resistance and Propulsion Performances of High-Speed Amphibious Assault Vehicles (고속 상륙돌격장갑차의 저항 및 추진 성능에 관한 수치 분석)

  • Kim, Taehyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.84-98
    • /
    • 2021
  • The hydrodynamic characteristics of amphibious assault vehicles are investigated using commercial CFD code, STAR-CCM+. Resistance performances of a displacement-type vehicle and a semi-planing type vehicle are analyzed in calm water. The self-propelled model is also computed for the semi-planing type vehicle. All computations are performed using an overset mesh system and a RANS based flow-solver coupled with a two-degree of freedom equations of motion. A moving reference frame is applied to simulate revolutions of impeller blades for a waterjet propulsion system. Grid dependency tests are performed to evaluate discretization errors for the mesh systems. The numerical analysis results are compared with the experimental results obtained from model tests. It is shown that RANS is capable of investigating the resistance and self-propulsion characteristics of high-speed amphibious assault vehicles. It is also found that a fully covered side skirt, which is covering tracks, reduces resistance and stern trim, besides increasing propulsive efficiency.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

Effects of Inlet Vent Shape on Aerodynamic Performance of a Low-Voltage Electric Motor Cooling Fan (유입부 형상이 저전압 전동기 냉각홴의 공력성능에 미치는 영향)

  • Park, Jae-Min;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.42-49
    • /
    • 2016
  • Aerodynamic analysis of a low-voltage electric motor has been performed with various inlet vent shapes. Effects of inlet vent shape on aerodynamic performance of a motor cooling fan have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The k-${\varepsilon}$ turbulence model was used for the analysis of turbulence. The finite volume method and unstructured tetrahedral grids were used in the numerical analysis. Optimal grid system in the computational domain was selected through a grid-dependency test. From the results of the flow analysis, considerable energy loss by flow separation was observed in the flow passage. It was found that mass flow rate through the cooling fan in the low-voltage motor can be increased by modifying the inlet vent shape. And, some inlet vent shapes were suggested to improve the aerodynamic performance of the motor cooling fan.

COMPARISON OF TURBULENCE MODELS ON ANALYSIS OF AIRCRAFT CONFIGURATIONS AT TRANSONIC SPEED (천음속 영역에서 항공기 유동해석에 미치는 난류모델의 영향 비교)

  • Huh, J.;Lee, N.;Lee, S.;Kwak, E.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, we study the effect of various turbulence models by comparing the aerodynamic characteristics and the flow patterns computed for aircraft models. An in-house CFD solver, MSAPv, that solves the three dimensional RANS equations with the turbulence model equations is used. The turbulence models used in this study are the Spalart-Allmaras model, Menter's $k-{\omega}$ SST model, Coakley's $q-{\omega}$ model, and Huang and Coakley's $k-{\varepsilon}$ model. DLR-F6 WB and WBNP configurations are selected for the study. We concentrate on the separated flow pattern variations with the turbulence models at the wing-body junction and the wing-pylon junction as well as drag polar curves.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Numerical investigations on winglet effects on aerodynamic and aeroacoustic performance of a civil aircraft wing

  • Vaezi, Erfan;Fijani, Mohammad Javad Hamedi
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.303-330
    • /
    • 2021
  • The paper discusses the effect of the winglets on the aerodynamic and aeroacoustic performance of Boeing 737-800 aircraft by numerical approach. For this purpose, computational fluid dynamics and fluent commercial software are used to solve the compressible flow governing equations. The RANS method and the K-ω SST turbulence model are selected to simulate the subsonic flow around the wing with acceptable accuracy and low computational cost. The main variables of steady flow around the simple and blended wing in constant atmospheric conditions are computed by numerical solution of governing equations. The solution of the acoustic field has also been accomplished by the broad-band acoustic source model. The results reveal that adding a blended winglet increases the pressure difference near the wingtip,which increases the lift force. Also, the blended winglet reduces the power and magnitude of vorticities around the wingtip, which reduces the wing's drag force. The effects of winglets on aerodynamic forces lead to a 3.8% increase in flight range and a 3.6% increase in the maximum payload of the aircraft. Also, the acoustic power level variables on the surfaces and fields around the wing have been investigated integrally and locally.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.