• Title/Summary/Keyword: RANS equations

Search Result 197, Processing Time 0.022 seconds

Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance (자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석)

  • Ju, Jae-Woo;Lee, Ki-Don;Heo, Man-Woong;Kim, Kwang-Yong;Park, June-Kyu;Yun, Jung-Hwan;Kim, Hong-Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

Evaluation of Thermal Performances of Various Fan-Shaped Pin-Fin Geometries (다양한 부채꼴 핀휜 형상의 열성능 평가)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.557-570
    • /
    • 2014
  • The heat transfer, pressure loss, and thermal performance in a cooling channel were evaluated for various new fan-shaped pin-fin geometries using three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence was modeled using the low-Reynolds-number SST turbulence model in the Reynolds number range of 5,000-100,000. The numerical results for the area-averaged Nusselt numbers were validated by comparing them with the experimental data under the same conditions. A parametric study for three types of fan-shaped pin-fin geometries was performed with two parameters, namely, the leading and trailing reduction angles.

The Influence of Meshing Strategies on the Propeller Simulation by CFD

  • Bahatmaka, Aldias;Kim, Dong-Joon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.78-85
    • /
    • 2018
  • This paper presents a study of the effects of the free surface to marine propeller including the mesh effect of the models. In the present study, we conduct the numerical simulation for propeller performance employing the openwater test. The numerical simulations compare the meshing strategies for the propeller and show the effects on both thrust and torque. OpenFOAM is applied to solve the propeller problem and then open water performances of KCS propeller (KP505) are estimated using a Reynold-averaged Navier-Stokes equations (RANS) solver and the turbulence of the $K-{\omega}$ SST model. Unstructured meshes are used in the numerical simulation employing hexahedral meshing for mesh generation. The arbitrary mesh interfacing (AMI) and multiple rotating frame (MRF) are compared to define the best meshing strategy. The meshing strategies are evaluated through 3 classifications, i.e., coarse, medium, and fine mesh. Thus, the propeller can be performed utilizing the best mesh strategy. The computational results are validated by comparison with the experimental results. The $K_T$, $K_Q$, and efficiency of the propeller are compared to an experimental result and for all of the meshing strategies. Thus, the simulations show the influence of meshing in order to perform the propeller performances.

Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel (사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석)

  • Lee, G.H.;Nine, Md.J.;Choi, S.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

Experimental and Numerical Studies of the Flowfield around an Axisymmetric Body (축대칭 물체 주위유동의 실험적·수치적 연구)

  • Ahn, Jong-Woo;Song, In-Haeng;Park, Tae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.9-18
    • /
    • 1997
  • Experimental and numerical studies are carried out to investigate flow characteristics around an axisymmetric body with and without a compound propulsor. The effects of a compound propulsor are investigated as measuring the surface pressure distribution and the velocity profiles using LDV system in the cavitation tunnel of KRISO. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method. The standard k-${\varepsilon}$ turbulence model is adopted for turbulence closure. In order to calculate propeller-hull interaction, the induced velocity calculated by lifting surface theory is considered as the boundary condition at the propeller plane. The experimental data obtained in this study can provide a useful database for development and validation of CFD code.

  • PDF

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

Numerical Study of the Flow Field Around an Axisymmetric Body with Integrated Propulsors (복합추진장치가 포함된 축대칭 물체 주위유동의 수치적 연구)

  • Jong-Woo Ahn;Il-Sung Moon;Sang-Woo Pyo;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Numerical study is carried out to investigate flow characteristics around an axisymmetric body with and without an integrated propulsor. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method and the standard $k-\varepsilon$ turbulence model for turbulence closure. In order to investigate the propulsor-hull interaction, the induced velocity calculated by surface panel methods is utilized for the boundary condition at the propeller plane. The calculated results are compared to the experimental results. It is considered that the present numerical code can be used for design of an integrated propulsor.

  • PDF

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.